(49-2) 02 * << * >> * Russian * English * Content * All Issues
Common topological charge of several similar off-axis vortex light beams of arbitrary rotationally symmetric shape
A.A. Kovalev 1,2, V.V. Kotlyar 1,2, A.G. Nalimov 1,2
1 Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
2 Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34
PDF, 2537 kB
DOI: 10.18287/2412-6179-CO-1518
Pages: 173-179.
Full text of article: Russian language.
Abstract:
We investigate the topological charge of superposition of parallel identical vortex beams of arbitrary shape – either Laguerre-Gaussian beams or Bessel-Gaussian beams or some other vortex beams with a rotationally symmetric intensity distribution. It is known that if all beams in the superposition are in-phase then the topological charge of the whole superposition is equal to the topological charge of each constituent beam, n. We show that if the beams are arranged on a circle with their phases linearly increasing on this circle, so that the phase difference between the neighboring beams equals 2πp/N, where N is the number of beams and р is integer, then the superposition has the topological charge n+p.
Keywords:
topological charge, superposition of parallel beams, vortex beam.
Citation:
Kovalev AA, Kotlyar VV, Nalimov AG. Common topological charge of several similar off-axis vortex light beams of arbitrary rotationally symmetric shape. Computer Optics 2025; 49(2): 173-179. DOI: 10.18287/2412-6179-CO-1518.
Acknowledgements:
This work was financially supported by the Russian Science Foundation under project No. 22-12-00137 (Theoretical background) and within the government project of the NRC "Kurchatov Institute" (Numerical simulation).
References:
- Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992; 45(11): 8185. DOI: 10.1103/PhysRevA.45.8185.
- Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A: Pure Appl Opt 2004; 6(2): 259. DOI: 10.1088/1464-4258/6/2/018.
- Volyar A, Bretsko M, Akimova Y, Egorov Y. Measurement of the vortex and orbital angular momentum spectra with a single cylindrical lens. Appl Opt 2019; 58(21): 5748-5755. DOI: 10.1364/AO.58.005748.
- Volyar A, Bretsko M, Akimova Y, Egorov Y. Measurement of the vortex spectrum in a vortex-beam array without cuts and gluing of the wavefront. Opt Lett 2018; 43(22): 5635-5638. DOI: 10.1364/OL.43.005635.
- Kovalev AA, Kotlyar VV, Nalimov AG. Topological charge and asymptotic phase invariants of vortex laser beams. Photonics 2021; 8(10): 445. DOI: 10.3390/photonics8100445.
- Le DH, Pal A, Qadeer A, Kleinert M, Kleinert J, Goel S, Khare K, Bhattacharya M. Conservation of extremal ellipticity for coherent single mode Gaussian beams propagating in rotationally invariant media. Opt Commun 2022; 503: 127465. DOI: 10.1016/j.optcom.2021.127465.
- Anderson ME, Bigman H, de Araujo LE, Chaloupka JL. Measuring the topological charge of ultrabroadband, optical-vortex beams with a triangular aperture. J Opt Soc Am B 2012; 29(8): 1968-1976. DOI: 10.1364/JOSAB.29.001968.
- Vaity P, Banerji J, Singh RP. Measuring the topological charge of an optical vortex by using a tilted convex lens. Phys Lett A 2013; 377(15): 1154-1156. DOI: 10.1016/j.physleta.2013.02.030.
- Zhu J, Zhang P, Li Q, Wang F, Wang C, Zhou Y, Wang J, Gao H, Kwek LC, Li F. Measuring the topological charge of orbital angular momentum beams by utilizing weak measurement principle. Sci Rep 2019; 9(1): 7993. DOI: 10.1038/s41598-019-44465-z.
- Ge H, Long ZW, Xu XY, Hua JG, Liu Y, Xie BY, Jiang JH, Lu MH, Chen YF. Direct measurement of acoustic spectral density and fractional topological charge. Phys Rev Appl 2023; 19(3): 034073. DOI: 10.1103/PhysRevApplied.19.034073.
- Shikder A, Nishchal NK. Measurement of the fractional topological charge of an optical vortex beam through interference fringe dislocation. Appl Opt 2023; 62(10): D58-D67. DOI: 10.1364/AO.476455.
- Wang D, Huang H, Toyoda H, Liu H. Topological charge detection using generalized contour-sum method from distorted donut-shaped optical vortex beams: experimental comparison of closed path determination methods. Appl Sci 2019; 9(19): 3956. DOI: 10.3390/app9193956.
- Guo M, Le W, Wang C, Rui G, Zhu Z, He J, Gu B. Generation, topological charge, and orbital angular momentum of off-axis double vortex beams. Photonics 2023; 10(4): 368. DOI: 10.3390/photonics10040368.
- Peters E, Funes G, Martínez-León L, Tajahuerce E. Dynamics of fractional vortex beams at Fraunhofer diffraction zone. Photonics 2022; 9(7): 479. DOI: 10.3390/photonics9070479.
- Peters E, Funes G, Martínez-León L, Tajahuerce E. Analysis of practical fractional vortex beams at far field. Opt Laser Technol 2022; 156: 108480. DOI: 10.1016/j.optlastec.2022.108480.
- Jesus-Silva AJ, Fonseca EJS, Hickmann JM. Study of the birth of a vortex at Fraunhofer zone. Opt Lett 2012; 37(21): 4552-4554. DOI: 10.1364/OL.37.004552.
- Wen J, Wang LG, Yang X, Zhang J, Zhu SY. Vortex strength and beam propagation factor of fractional vortex beams. Opt Express 2019; 27(4): 5893-5904. DOI: 10.1364/OE.27.005893.
- Kotlyar V, Kovalev A, Nalimov A, Porfirev A. Evolution of a vortex with an initial fractional topological charge. Phys Rev A 2020; 102(2): 023516. DOI: 10.1103/PhysRevA.102.023516.
- Akulshin AM, Novikova I, Mikhailov EE, Suslov SA, McLean RJ. Arithmetic with optical topological charges in stepwise-excited Rb vapor. Opt Lett 2016; 41(6): 1146-1149. DOI: 10.1364/OL.41.001146.
- Meng F, Wei XG, Qu YJ, Chen Y, Zhang XJ, Kang ZH, Wang L, Wang HH, Gao JY. Arithmetic operation of orbital angular momentum of light via slow-light four-wave mixing. J Lumin 2022; 242: 118551. DOI: 10.1016/j.jlumin.2021.118551.
- Kovalev AA, Kotlyar VV, Kozlova ES, Butt MA. Dividing the topological charge of a Laguerre–Gaussian beam by 2 using an off-axis Gaussian beam. Micromachines 2022; 13(10): 1709. DOI: 10.3390/mi13101709.
- Kotlyar VV, Kovalev AA, Kozlova ES, Savelyeva AA. Tailoring the topological charge of a superposition of identical parallel Laguerre–Gaussian beams. Micromachines 2022; 13(12): 2227. DOI: 10.3390/mi13122227.
- Aksenov VP, Dudorov VV, Kolosov VV. Properties of vortex beams formed by an array of fibre lasers and their propagation in a turbulent atmosphere. Quantum Electron 2016; 46(8): 726. DOI: 10.1070/QEL16088.
- Aksenov VP, Dudorov VV, Kolosov VV, Levitsky ME. Synthesized vortex beams in the turbulent atmosphere. Front Phys 2020; 8: 143. DOI: 10.3389/fphy.2020.00143.
- Wang LG, Wang LQ, Zhu SY. Formation of optical vortices using coherent laser beam arrays. Opt Commun 2009; 282(6): 1088-1094. DOI: 10.1016/j.optcom.2008.12.004.
- Izdebskaya Y, Fadeyeva T, Shvedov V, Volyar A. Vortex-bearing array of singular beams with very high orbital angular momentum. Opt Lett 2006; 31(17): 2523-2525. DOI: 10.1364/OL.31.002523.
- Long J, Hou T, Chang Q, Yu T, Su R, Ma P, Ma Y, Zhou P, Si L. Generation of optical vortex lattices by a coherent beam combining system. Opt Lett 2021; 46(15): 3665-3668. DOI: 10.1364/OL.425186.
- Izdebskaya Y, Shvedov V, Volyar A. Symmetric array of off-axis singular beams: spiral beams and their critical points. J Opt Soc Am A 2008; 25(1): 171-181. DOI: 10.1364/JOSAA.25.000171.
- Shen Y, Yang X, Naidoo D, Fu X, Forbes A. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica 2020; 7(7): 820-831. DOI: 10.1364/OPTICA.382994.
- Goodman JW. Introduction to Fourier Optics. 2nd ed. New York: McGraw-Hill; 1996. ISBN: 0-07-024254-2.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20