(49-2) 02 * << * >> * Russian * English * Content * All Issues
  
Common topological charge of several similar off-axis vortex light beams of arbitrary rotationally symmetric shape
 A.A. Kovalev 1,2, V.V. Kotlyar 1,2, A.G. Nalimov 1,2
 1 Image Processing Systems Institute, NRC "Kurchatov Institute",
     443001, Samara, Russia, Molodogvardeyskaya 151;
     2 Samara National Research University,
  443086, Samara, Russia, Moskovskoye Shosse 34
  PDF, 2537 kB
DOI: 10.18287/2412-6179-CO-1518
Pages: 173-179.
Full text of article: Russian language.
 
Abstract:
We investigate the topological charge of  superposition of parallel identical vortex beams of arbitrary shape – either  Laguerre-Gaussian beams or Bessel-Gaussian beams or some other vortex beams  with a rotationally symmetric intensity distribution. It  is known that if all beams in the superposition are in-phase then the  topological charge of the whole superposition is equal to the topological charge  of each constituent beam, n. We show  that if the beams are arranged on a circle with their phases linearly  increasing on this circle, so that the phase difference between the neighboring  beams equals 2πp/N, where N is the number  of beams and р is integer, then the  superposition has the topological charge n+p.
Keywords:
topological charge,  superposition of parallel beams, vortex  beam.
Citation:
  Kovalev AA, Kotlyar VV, Nalimov AG. Common topological charge of several similar  off-axis vortex light beams of arbitrary rotationally symmetric shape. Computer Optics 2025; 49(2): 173-179. DOI: 10.18287/2412-6179-CO-1518.
Acknowledgements:
  This work  was financially supported by the Russian Science Foundation under project  No. 22-12-00137 (Theoretical background) and  within the government project of the NRC "Kurchatov Institute" (Numerical simulation).
References:
  - Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman  JP. Orbital angular momentum of light and the transformation of  Laguerre-Gaussian laser modes. Phys Rev A 1992; 45(11): 8185. DOI:  10.1103/PhysRevA.45.8185.
 
  - Berry MV. Optical vortices evolving from helicoidal  integer and fractional phase steps. J Opt A: Pure Appl Opt 2004; 6(2): 259.  DOI: 10.1088/1464-4258/6/2/018.
 
  - Volyar  A, Bretsko M, Akimova Y, Egorov Y. Measurement of the vortex and orbital  angular momentum spectra with a single cylindrical lens. Appl Opt 2019; 58(21):  5748-5755. DOI: 10.1364/AO.58.005748.
     
  - Volyar  A, Bretsko M, Akimova Y, Egorov Y. Measurement of the vortex spectrum in a  vortex-beam array without cuts and gluing of the wavefront. Opt Lett 2018;  43(22): 5635-5638. DOI: 10.1364/OL.43.005635.
     
  - Kovalev AA,  Kotlyar VV, Nalimov AG. Topological charge and asymptotic phase invariants of  vortex laser beams. Photonics 2021; 8(10): 445. DOI: 10.3390/photonics8100445.
     
  - Le  DH, Pal A, Qadeer A, Kleinert M, Kleinert J, Goel S, Khare K, Bhattacharya M. Conservation  of extremal ellipticity for coherent single mode Gaussian beams propagating in  rotationally invariant media. Opt Commun 2022; 503: 127465. DOI:  10.1016/j.optcom.2021.127465.
     
  - Anderson ME,  Bigman H, de Araujo LE, Chaloupka JL. Measuring the topological charge of  ultrabroadband, optical-vortex beams with a triangular aperture. J Opt Soc Am B  2012; 29(8): 1968-1976. DOI: 10.1364/JOSAB.29.001968.
     
  - Vaity P, Banerji J, Singh RP. Measuring  the topological charge of an optical vortex by using a tilted convex lens. Phys  Lett A 2013; 377(15): 1154-1156. DOI: 10.1016/j.physleta.2013.02.030.
     
  - Zhu  J, Zhang P, Li Q, Wang F, Wang C, Zhou Y, Wang J, Gao H, Kwek LC, Li F.  Measuring the topological charge of orbital angular momentum beams by utilizing  weak measurement principle. Sci Rep 2019; 9(1): 7993. DOI:  10.1038/s41598-019-44465-z.
     
  - Ge H, Long ZW, Xu XY, Hua JG, Liu Y, Xie BY, Jiang JH,  Lu MH, Chen YF. Direct measurement of  acoustic spectral density and fractional topological charge. Phys Rev Appl  2023; 19(3): 034073. DOI: 10.1103/PhysRevApplied.19.034073.
     
  - Shikder  A, Nishchal NK. Measurement of the fractional topological charge of an optical  vortex beam through interference fringe dislocation. Appl Opt 2023; 62(10):  D58-D67. DOI: 10.1364/AO.476455.
     
  - Wang  D, Huang H, Toyoda H, Liu H. Topological charge detection using generalized  contour-sum method from distorted donut-shaped optical vortex beams:  experimental comparison of closed path determination methods. Appl Sci 2019;  9(19): 3956. DOI: 10.3390/app9193956.
     
  - Guo  M, Le W, Wang C, Rui G, Zhu Z, He J, Gu B. Generation, topological charge, and  orbital angular momentum of off-axis double vortex beams. Photonics 2023;  10(4): 368. DOI: 10.3390/photonics10040368.
     
  - Peters  E, Funes G, Martínez-León L, Tajahuerce E. Dynamics of fractional vortex beams  at Fraunhofer diffraction zone. Photonics 2022; 9(7): 479. DOI:  10.3390/photonics9070479.
     
  - Peters  E, Funes G, Martínez-León L, Tajahuerce E. Analysis of practical fractional  vortex beams at far field. Opt Laser Technol 2022; 156: 108480. DOI:  10.1016/j.optlastec.2022.108480.
     
  - Jesus-Silva  AJ, Fonseca EJS, Hickmann JM. Study of the birth of a vortex at Fraunhofer  zone. Opt Lett 2012; 37(21): 4552-4554. DOI: 10.1364/OL.37.004552.
     
  - Wen  J, Wang LG, Yang X, Zhang J, Zhu SY. Vortex strength and beam propagation  factor of fractional vortex beams. Opt Express 2019; 27(4): 5893-5904. DOI:  10.1364/OE.27.005893.
     
  - Kotlyar  V, Kovalev A, Nalimov A, Porfirev A. Evolution of a vortex with an initial  fractional topological charge. Phys Rev A 2020; 102(2): 023516. DOI:  10.1103/PhysRevA.102.023516.
     
  - Akulshin AM, Novikova I, Mikhailov  EE, Suslov SA, McLean RJ. Arithmetic with optical topological charges in  stepwise-excited Rb vapor. Opt Lett 2016; 41(6): 1146-1149. DOI:  10.1364/OL.41.001146.
     
  - Meng  F, Wei XG, Qu YJ, Chen Y, Zhang XJ, Kang ZH, Wang L, Wang HH, Gao JY.  Arithmetic operation of orbital angular momentum of light via slow-light  four-wave mixing. J Lumin 2022; 242: 118551. DOI: 10.1016/j.jlumin.2021.118551.
     
  - Kovalev  AA, Kotlyar VV, Kozlova ES, Butt MA. Dividing the topological charge of a  Laguerre–Gaussian beam by 2 using an off-axis Gaussian beam. Micromachines  2022; 13(10): 1709. DOI: 10.3390/mi13101709.
     
  - Kotlyar VV,  Kovalev AA, Kozlova ES, Savelyeva AA. Tailoring the topological charge of a  superposition of identical parallel Laguerre–Gaussian beams. Micromachines  2022; 13(12): 2227. DOI: 10.3390/mi13122227.
     
  - Aksenov  VP, Dudorov VV, Kolosov VV. Properties of vortex beams formed by an array of  fibre lasers and their propagation in a turbulent atmosphere. Quantum Electron  2016; 46(8): 726. DOI: 10.1070/QEL16088.
     
  - Aksenov  VP, Dudorov VV, Kolosov VV, Levitsky ME. Synthesized vortex beams in the  turbulent atmosphere. Front Phys 2020; 8: 143. DOI: 10.3389/fphy.2020.00143.
     
  - Wang LG, Wang  LQ, Zhu SY. Formation of optical vortices using coherent laser beam arrays. Opt  Commun 2009; 282(6): 1088-1094. DOI: 10.1016/j.optcom.2008.12.004.
     
  - Izdebskaya  Y, Fadeyeva T, Shvedov V, Volyar A. Vortex-bearing array of singular beams with  very high orbital angular momentum. Opt Lett 2006; 31(17): 2523-2525. DOI:  10.1364/OL.31.002523.
     
  - Long  J, Hou T, Chang Q, Yu T, Su R, Ma P, Ma Y, Zhou P, Si L. Generation of optical  vortex lattices by a coherent beam combining system. Opt Lett 2021; 46(15):  3665-3668. DOI: 10.1364/OL.425186.
     
  - Izdebskaya  Y, Shvedov V, Volyar A. Symmetric array of off-axis singular beams: spiral  beams and their critical points. J Opt Soc Am A 2008; 25(1): 171-181. DOI:  10.1364/JOSAA.25.000171.
     
  - Shen  Y, Yang X, Naidoo D, Fu X, Forbes A. Structured ray-wave vector vortex beams in  multiple degrees of freedom from a laser. Optica 2020; 7(7): 820-831. DOI:  10.1364/OPTICA.382994. 
 
  - Goodman JW. Introduction to Fourier Optics. 2nd ed. New York:  McGraw-Hill; 1996. ISBN: 0-07-024254-2.
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20