(49-2) 15 * << * >> * Russian * English * Content * All Issues

Approach to adaptive spatial interpolation of geophysical information
A.V. Vorobev 1,2, G.R. Vorobeva 1

Geophysical Center of RAS,
119296, Moscow, Russia, Molodezhnaya St. 3;
Ufa University of Science and Technology, Ufa, Russia,
K. Marx St. 12, Ufa, 450008, Russia

 PDF, 1074 kB

DOI: 10.18287/2412-6179-CO-1474

Pages: 301-310.

Full text of article: Russian language.

Abstract:
One of the well-known problems of processing spatial information in applied areas is its pronounced spatial anisotropy, due to both the uneven distribution of data sources over the earth's surface and their temporary non-operability due to technical failures and the human factor. This problem creates tangible obstacles in the study of processes of various origins, on the one hand, and in decision-making processes based on such information, on the other. Thus, geophysical information, in particular, geomagnetic data, which are recorded in real time by a network of magnetic observatories and variation stations around the world, has a pronounced spatial anisotropy. At the same time, the known methods of interpolation, which do not take into account either the features of the described processes / phenomena, or their dependence on external factors, do not effectively cope with the task. In this paper, we propose an approach to adaptive spatial interpolation, the main idea of which is to determine the interpolation methods that are most effective for various combinations of external and internal factors. Further, in the process of interpolation, the desired value is restored by the selected methods based on its geospatial reference and a complex of external factors. By the example of geomagnetic information, the effectiveness of the proposed approach is shown using the developed web-oriented research prototype of a software solution.

Keywords:
geospatial data, spatial interpolation, spatial anisotropy, geoinformation systems and technologies, web GIS.

Citation:
Vorobev AV, Vorobeva GR. Approach to adaptive spatial interpolation of geophysical information. Computer Optics 2025; 49(2): 301-310. DOI: 10.18287/2412-6179-CO-1474.

Acknowledgements:
The work was funded by the Russian Science Foundation under project No. 21-77-30010.

References:

  1. Picot P, Guillaume B. The controllability of the Technosphere, an impossible question. The Anthropocene Review 2023; 11(1): 91-109. DOI: 10.1177/20530196231187242.
  2. Bezborodova OE. Intelligent information-measuring and control system for control of the state of the territorial technosphere [In Russian]. Measuring. Monitoring. Management. Control 2022; 2: 21-28. DOI: 10.21685/2307-5538-2022-2-3.
  3. Vorobev AV, Pilipenko VA, Enikeev TA, Vorobeva GR. Geoinformation system for analyzing the dynamics of extreme geomagnetic disturbances from observations of ground stations. Computer Optics 2020; 44(5): 782-790. DOI: 10.18287/2412-6179-CO-707.
  4. Vorobev AV, et al. System for dynamic visualization of geomagnetic disturbances based on data from ground-based magnetic stations. Scientific Visualization 2021; 13(1): 162-176. DOI: 10.26583/sv.13.1.11.
  5. Li G, et al. Multi-channel geomagnetic signal processing based on deep residual network and MVMD. Chin J Geophys 2023; 66(8): 3540-3556. DOI: 10.6038/cjg2022Q0576.
  6. Tsegmed B, Potapov A, Baatar N. Daytime geomagnetic pulsations accompanying sudden impulse of solar wind. Proc Mong Acad Sci 2022; 62(02:242): 1-14. DOI: 10.5564/pmas.v62i02.2380.
  7. Sun H, et al. Development of special geomagnetic data acquisition system with low cost. J Phys: Conf Seri 2022; 2395: 012028. DOI: 10.1088/1742-6596/2395/1/012028.
  8. Shen L, Sun G, Zhai W. A novel geomagnetic assimilation method of vector geomagnetic data. Results Phys 2021; 23: 104081. DOI: 10.1016/j.rinp.2021.104081.
  9. Antal A, Guerreiro P, Cheval S. Comparison of spatial interpolation methods for estimating the precipitation distribution in Portugal. Theor Appl Climatol 2021; 145(3-4): 1193-1206. DOI: 10.1007/s00704-021-03675-0.
  10. Luo P, et al. A generalized heterogeneity model for spatial interpolation. Int J Geogr Inf 2022; 37(3): 634-659. DOI: 10.1080/13658816.2022.2147530.
  11. Bustillo JP, et al. Assessment of a localized deterministic spatial interpolation method in generating an indoor radiofrequency radiation map. J Phys: Conf Ser 2019; 1248: 012075. DOI: 10.1088/1742-6596/1248/1/012075.
  12. Ijaz Z, et al. Development and optimization of geotechnical soil maps using various geostatistical and spatial interpolation techniques: a comprehensive study. Bull Eng Geol Environ 2023; 82(6): 215. DOI: 10.1007/s10064-023-03244-x.
  13. Delasalles E, Ziat A, Denoyer L. Spatio-temporal neural networks for space-time data modeling and relation discovery. Knowl Inf Syst 2019; 61(3): 1241-1267. DOI: 10.1007/s10115-018-1291-x.
  14. Zhang M, Yu D, Li Y. Deep geometric neural network for spatial interpolation. SIGSPATIAL '22: Proc 30th Int Conf on Advances in Geographic Information Systems 2022: 72. DOI: 10.1145/3557915.3561008.
  15. Du Y, et al. An adaptive multipath linear interpolation method for sample optimization. Mathematics 2022; 11(3): 768. DOI: 10.3390/math11030768.
  16. Shepard D. A two-dimensional interpolation function for irregularly-spaced data. ACM '68: Proceedings of the 1968 23rd ACM National Conf 1968: 517-524. DOI: 10.1145/800186.810616.
  17. Sun H, Chen J. Propagation map reconstruction via interpolation assisted matrix completion. IEEE Trans Signal Process 2022; 70: 6154-6169. DOI: 10.1109/TSP.2022.3230332.
  18. Alexa M. Conforming weighted delaunay triangulations. ACM Trans Graph 202; 39(6): 1-16. DOI: 10.1145/3414685.3417776.
  19. Zhang H, Tian Y, Zhao P. Dispersion curve interpolation based on kriging method. Appl Sci 2023; 13(4): 2557. DOI: 10.3390/app13042557.
  20. Lebrenz H, Bardossy A. Geostatistical interpolation by quantile kriging. Hydrol Earth Syst Sci 2019; 23(3): 1633-1648. DOI: 10.5194/hess-23-1633-2019.
  21. Thewlis J, et al. 4-dimensional local radial basis function interpolation of large, uniformly spaced datasets. Comput Methods Programs Biomed 2022; 228: 107235. DOI: 10.1016/j.cmpb.2022.107235.
  22. Saitta S, et al. Radial point interpolation method for isotropic nanoplates in bending using strain gradient theory. Int J Comput Methods 2022; 19(10): 2250023. DOI: 10.1142/S0219876222500232.
  23. Pedroso L, et al. Application of cubic spline interpolation with optimal spatial sampling for damage identification. Struct Contr Health Monit 2022; 29: e2856. DOI: 10.1002/stc.2856.
  24. Merwade V. Effect of spatial trends on interpolation of river bathymetry. J Hydrol 2009; 371(1): 169-181. DOI: 10.1016/j.jhydrol.2009.03.026.
  25. Vorobev AV, Pilipenko VA, Enikeev TA, Vorobeva GR. Geoinformation system for analyzing the dynamics of extreme geomagnetic disturbances from observations of ground stations. Computer Optics 2020; 44(5): 782-790. DOI: 10.18287/2412-6179-CO-707.
  26. Nguyen LAT, et al. Design and implementation of web application based on MVC Laravel architecture. Eur J Electr Eng Comput Sci 2022; 6(4): 23-29. DOI: 10.24018/ejece.2022.6.4.448. 
  27. Marculescu B, Zhang M, Arcuri A. On the faults found in REST APIs by automated test generation. ACM Trans Softw Eng Methodol 2022; 31(3): 41. DOI: 10.1145/3491038.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20