(49-3) 03 * << * >> * Russian * English * Content * All Issues

Spin and orbital Hall effects in the tight focus of coaxial superposition of two cylindrical vector beams of different-parity orders
V.V. Kotlyar 1,2, A.A. Kovalev 1,2, S.S. Stafeev 1,2, A.M. Telegin 2

Image Processing Systems Institute, NRC "Kurchatov Institute",
Molodogvardeyskaya Str. 151, Samara, 443001, Russia;
Samara National Research University,
Moskovskoye Shosse 34, Samara, 443086, Russia

 PDF, 1395 kB

DOI: 10.18287/2412-6179-CO-1549

Pages: 369-377.

Full text of article: Russian language.

Abstract:
We study tight focusing of coaxial superposition of two cylindrical vector beams (CVB) of different orders. In the initial plane, the polarization singularity index of such superposition equals the half-sum of the orders of the two constituent CVBs. Such superposition has neither spin angular momentum (SAM) nor transverse energy flow in the initial plane. We demonstrate that if two constituent CVBs are of different-parity orders, then, in the focal plane, there occur regions with nonzero longitudinal SAM components of alternating sign, alongside regions where opposite-handed transverse energy flows are rotating along closed paths (clockwise and counterclockwise). This means that the longitudinal spin and orbital Hall effects arise in the focal plane. On the contrary, if the two CVBs are of same-parity orders, polarization in the focal plane is inhomogeneous linear and the energy flow (Umov-Poynting vector) only has an on-axis component.

Keywords:
cylindrical vector beam, polarization singularity, tight focusing, spin angular momentum, spin Hall effect, orbital Hall effect.

Citation:
Kotlyar VV, Kovalev AA, Stafeev SS, Telegin AM. Spin and orbital Hall effects in the tight focus of coaxial superposition of two cylindrical vector beams of different-parity orders. Computer Optics 2025; 49(3): 369-377. DOI: 10.18287/2412-6179-CO-1549.

Acknowledgements:
This work was partly funded by the Russian Science Foundation under project No. 23-12-00236 (Theoretical part) and under the state assignment of the NRC "Kurchatov Institute" (Numerical simulation).

References:

  1. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
  2. Yew EYS, Sheppard CJR. Tight focusing of radially polarized Gaussian and Bessel–Gauss beams. Opt Lett 2007; 32(23): 3417-3419. DOI: 10.1364/OL.32.003417.
  3. Hnatovsky C, Shvedov V, Krolikowski W, Rode A. Revealing local field structure of focused ultrashort pulses. Phys Rev Lett 2011; 106(12): 123901. DOI: 10.1103/PhysRevLett.106.123901.
  4. Lv HR, Lu XQ, Han YS, Mou Z, Zhou CD, Wang SY, Teng SY. Metasurface cylindrical vector light generators based on nanometer holes. New J Phys 2019; 21(12): 123047. DOI: 10.1088/1367-2630/ab5f44.
  5. Milione G, Nguyen TA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett 2015; 40(21): 4887-4890. DOI: 10.1364/OL.40.004887.
  6. Harm W, Bernet S, Ritsch-Marte M, Harder I, Lindlein N. Adjustable diffractive spiral phase plates. Opt Express 2015; 23(1): 413-421. DOI: 10.1364/OE.23.000413.
  7. Marrucci L, Manzo C, Paparo D. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation. Appl Phys Lett 2006; 88(22): 221102. DOI: 10.1063/1.2207993.
  8. Zhao Z, Wang J, Li SH, Willner AE. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Opt Lett 2013; 38(6): 932-934. DOI: 10.1364/OL.38.000932.
  9. Chen WB, Abeysinghe DC, Nelson RL, Zhan QW. Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano Lett 2009; 9(12): 4320-4325. DOI: 10.1021/nl903145p.
  10. Chen S, Xie Z, Ye H, Wang X, Guo Z, He Y, Li Y, Yuan X, Fan D. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control. Light Sci Appl 2021; 10: 222. DOI: 10.1038/s41377-021-00667-7.
  11. Li J, Chen S, Yang H, Li J, Yu P, Cheng H, Gu C, Chen H-T, Tian J. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Adv Funct Mater 2015; 25(5): 704-710. DOI: 10.1002/adfm.201403669.
  12. Deng Z-L, Deng J, Zhuang X, Wang S, Li K, Wang Y, Chi Y, Ye X, Xu J, Wang GP, Zhao R, Wang X, Cao Y, Cheng X, Li G, Li X. Diatomic metasurface for vectorial holography. Nano Lett 2018; 18(5): 2885-2892. DOI: 10.1021/acs.nanolett.8b00047.
  13. Chen Q, Liu P, Fu Y, Zhang S, Zhang Y, Yuan X, Min C. Monolayer chiral metasurface for generation of arbitrary cylindrical vector beams. Photonics 2024; 11(1): 57. DOI: 10.3390/photonics 11010057.
  14. Freund I. Cones, spirals, and Möbius strips, in elliptically polarized light. Opt Commun 2005; 249(1-3): 7-22. DOI: 10.1016/j.optcom.2004.12.052.
  15. Kotlyar VV, Stafeev SS, Kovalev AA, Zaitsev VD. Spin Hall effect before and after the focus of a high-order cylindrical vector beam. Appl Sci 2022; 12(23): 12218. DOI: 10.3390/app122312218.
  16. Shu W, Lin C, Wu J, Chen S, Ling X, Zhou X, Luo H, Wen S. Three-dimensional spin Hall effect of light in tight focusing. Phys Rev A 2020; 101(2): 023819. DOI: 10.1103/physreva.101.023819.
  17. Stafeev SS, Nalimov AG, Zaitsev VD, Kotlyar VV. Tight focusing cylindrical vector beams with fractional order. J Opt Soc Am B 2021; 38(4): 1090-1096. DOI: 10.1364/JOSAB.413581.
  18. Kotlyar VV, Stafeev SS, Zaitsev VD, Kozlova ES. Spin-orbital conversion with the tight focus of an axial superposition of a high-order cylindrical vector beam and a beam with linear polarization. Micromachines 2022; 13(7): 1112. DOI: 10.3390/mi13071112.
  19. He Y, Xie Z, Yang B, Chen X, Liu J, Ye H, Zhou X, Li Y, Chen S, Fan D. Controllable photonic spin Hall effect with phase function construction. Photonics Res 2020; 8(6): 963-971. DOI: 10.1364/PRJ.388838.
  20. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc R Soc Lond Ser A 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
  21. Khonina SN, Ustinov AV, Porfirev AP. Vector Lissajous laser beams. Opt Lett 2020; 45(15): 4112-4115. DOI: 10.1364/OL.398209.
  22. Bliokh KY, Ostrovskaya EA, Alonso MA, Rodriguez-Herrera OG, Lara D, Dainty C. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt Express 2011; 19(27): 26132-26149. DOI: 10.1364/OE.19.026132.
  23. Kovalev AA, Kotlyar VV. Spin Hall effect of double-index cylindrical vector beams in a tight focus. Micromachines 2023; 14(2): 494. DOI: 10.3390/mi14020494.
  24. Humblet J. Sur le moment d’impulsion d’une onde électromagnétique. Physica 1943; 10(7): 585-603. DOI: 10.1016/s0031-8914(43)90626-3.
  25. Donato MG, Vasi S, Sayed R, Jones PH, Bonaccorso F, Ferrari AC, Gucciardi PG, Maragò OM. Optical trapping of nanotubes with cylindrical vector beams. Opt Lett 2012; 37(16): 3381-3383. DOI: 10.1364/OL.37.003381.
  26. Zhong MC, Gong L, Li D, Zhou JH, Wang ZQ, Li YM. Optical trapping of core-shell magnetic microparticles by cylindrical vector beams. Appl Phys Lett 2014; 105(18): 181112. DOI: 10.1063/1.4901343.
  27. Yang X, Mou Y, Zapata R, Reynier B, Gallas B, Mivelle M. An inverse Faraday effect generated by linearly polarized light through a plasmonic nano-antenna. Nanophotonics 2023; 12(4): 687-694. DOI: 10.1515/nanoph-2022-0488.
  28. González-Alcalde AK, Shi X, Ortiz VH, Feng J, Wilson RB, Vuong LT. Enhanced inverse Faraday effect and time-dependent thermo-transmission in gold nanodisks. Nanophotonics 2024; 13(11): 1993-2002. DOI: 10.1515/nanoph-2023-0777.
  29. Zhai Y, Cao L, Liu Y, Tan X. A review of polarization-sensitive materials for polarization holography. Materials 2020; 13(23): 5562. DOI: 10.3390/ma13235562.
  30. Haslinger MJ, Sivun D, Pöhl H, Munkhbat B, Mühlberger M, Klar TA, Scharber MC, Hrelescu C. Plasmon-assisted direction- and polarization-sensitive organic thin-film detector. Nanomaterials 2020; 10(9): 1866. DOI: 10.3390/nano10091866.
  31. Cao M, Xie Z, Zhong Y, Lei T, Zhang W, Liu S, Yuan X. Cylindrical vector beams demultiplexing communication based on a vectorial diffractive optical element. Nanophotonics 2023; 12(9): 1753-1762. DOI: 10.1515/nanoph-2023-0009.
  32. Zhang H, Fu C, Fang J, Lei T, Zhang Y, Yuan X. Cylindrical vector beams demultiplexing optical communication based on spin-dependent vortex Dammann grating. Appl Opt 2020; 59(35): 11041-11045. DOI: 10.1364/AO.409641.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20