(49-3) 05 * << * >> * Russian * English * Content * All Issues

Inversion of circular polarizaion in anisotropic fibers with a torsional acoustic wave
D.V. Vikulin 1, C.N. Alexeyev 1, I.S. Vikulina 1, M.A. Yavorsky 1

V.I. Vernadsky Crimean Federal University,
Prospekt Vernadskogo 4, Simferopol, 295007, Republic of Crimea, Russia

 PDF, 910 kB

DOI: 10.18287/2412-6179-CO-1566

Pages: 383-390.

Full text of article: English language.

Abstract:
This article studies acousto-optical transformations of fiber modes in a circular single-mode anisotropic optical fiber with a traveling torsional acoustic wave of the fundamental order. For the first time, analytical expressions for resonant optical modes and the spectrum of propagation constants are obtained by applying a resonant perturbation theory to the scalar wave equation. This made it possible to consistently describe the experimentally demonstrated mutual transformation of linearly polarized LP0 fiber modes, while taking into account an optical frequency shift. A new effect of acoustically controlled sign inversion of the spin angular momentum of the fundamental mode is predicted. A possibility of generating entangled optical states in which the polarization direction and frequency of the optical beam are entangled has been established.

Keywords:
optical fiber, torsional acoustic wave, acousto-optic interaction, spin angular momentum.

Citation:
Vikulin DV, Alexeyev CN, Vikulina IS, Yavorsky MA. Inversion of circular polarizaion in anisotropic fibers with a torsional acoustic wave. Computer Optics 2025; 49(3): 383-390. DOI: 10.18287/2412-6179-CO-1566.

Acknowledgements:
This work was financially supported by the Russian Science Foundation under project No. 20-12-00291.

References:

  1. Thurston RN. Elastic waves in rods and optical fibers. J Sound Vib 1992; 159(3): 441-467. DOI: 10.1016/0022-460X(92)90752-J.
  2. Pohl AAP, Oliveira RA, Da Silva RE, et al. Advances and new applications using the acousto-optic effect in optical fibers. Photonic Sens 2013; 3(1): 1-25. DOI: 10.1007/s13320-013-0100-0.
  3. Liu WF, Russell PSJ, Dong L. Acousto-optic superlattice modulator using a fiber Bragg grating. Opt Lett 1997; 22(19): 1515-1517. DOI: 10.1364/OL.22.001515.
  4. Liu WF, Russell PSJ, Dong L. 100% efficient narrow-band acoustooptic tunable reflector using fiber Bragg grating. J Lightw Technol 1998; 16(11): 2006-2009. DOI: 10.1109/50.730362.
  5. Kim BY, Blake JN, Engan HE, Shaw HJ. All-fiber acousto-optic frequency shifter. Opt Lett 1986; 11(6): 389-391. DOI: 10.1364/OL.11.000389.
  6. Engan HE, Kim BY, Blake JN, Shaw HJ. Propagation and optical interaction of guided acoustic waves in two-mode optical fibers. J Lightw Technol 1988; 6(3): 428-436. DOI: 10.1109/50.4020.
  7. Askautrud JO, Engan HE. Fiber-optic frequency shifter with no mode change using cascaded acousto-optic interaction regions. Opt Lett 1990; 15(11): 649-651. DOI: 10.1364/OL.15.000649.
  8. Shi F, Lu J, Meng L, Cheng P, Liu X, Pang F, Zeng X. All-fiber method for real-time transverse-mode switching of ultrashort pulse. IEEE Photonics Technol Lett 2019; 32(2): 97-100. DOI: 10.1109/LPT.2019.2958318.
  9. Östling D, Engan HE. Narrow-band acousto-optic tunable filtering in a two-mode fiber. Opt Lett 1995; 20(11): 1247-1249. DOI: 10.1364/OL.20.001247.
  10. Culverhouse DO, Yun SH, Richardson DJ, Birks TA, Farwell SG, Russell PSJ. Low-loss all-fiber acousto-optic tunable filter. Opt Lett 1997; 22(2): 96-98. DOI: 10.1364/OL.22.000096.
  11. Birks TA, Farwell SG, Russell PSJ, Pannell CN. Four-port fiber frequency shifter with a null taper coupler. Opt Lett 1994; 19(23): 1964-1966. DOI: 10.1364/OL.19.001964.
  12. Birks TA, Culverhouse DO, Farwell SG, Russell PSJ. 2×2 single-mode fiber routing switch. Opt Lett 1996; 21(10): 722-724. DOI: 10.1364/OL.21.000722.
  13. Sokolenko B, Shostka N, Karakchieva O, Degtyarev S, Vikulin D, Alexeyev C, Yavorsky M. Experimental demonstration of acoustically induced polarization-dependent fiber optical vortex inversion. Opt Lett 2023; 48(16): 4400-4403. DOI: 10.1364/OL.498264.
  14. Yavorsky M, Vikulin D, Alexeyev C, Belotelov V. Photon–phonon spin–orbit interaction in optical fibers. Optica 2021; 8(5): 638-641. DOI: 10.1364/OPTICA.416498.
  15. Wei K, Zhang W, Huang L, Mao D, Gao F, Mei T, Zhao J. Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions. Opt Express 2017; 25(3): 2733-2741. DOI: 10.1364/OE.25.002733.
  16. Zhang W, Huang L, Wei K, et al. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave. Opt Express 2016; 24(10): 10376-10384. DOI: 10.1364/OE.24.010376.
  17. Berwick M, Pannell CN, Russell PStJ, Jackson DA. Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves. Electron Lett 1991; 27(9): 713-715. DOI: 0.1049/el:19910444.
  18. Lee KJ, Park HC, Park HS, Kim BY. Highly efficient all-fiber tunable polarization filter using torsional acoustic wave. Opt Express 2007; 15(19): 12362-12367. DOI: 10.1364/OE.15.012362.
  19. Lee KJ, Hong KS, Park HC, Kim BY. Polarization coupling in a highly birefringent photonic crystal fiber by torsional acoustic wave. Opt Express 2008; 16(7): 4631-4638. DOI: 10.1364/OE.16.004631.
  20. Kim HS, Yun SH, Kwang IK, Kim BY. All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile. Opt Lett 1997; 22(19): 1476-1478. DOI: 10.1364/OL.22.001476.
  21. Lee KJ, Park HC, Park HS, Kim BY. Highly efficient all-fiber tunable polarization filter using torsional acoustic wave. Opt Express 2007; 15(19): 12362-12367. DOI: 10.1364/OE.15.012362.
  22. Engan HE. Analysis of polarization-mode coupling by acoustic torsional waves in optical fibers. J Opt Soc Am A 1996; 13(1): 112-118. DOI: 10.1364/JOSAA.13.000112.
  23. Snyder AW, Love JD. Optical waveguide theory. London, New York: Chapman and Hall; 1983.
  24. Barshak EV, Vikulin DV, Lapin BP, Alieva SS, Alexeyev CN, Yavorsky MA. Robust higher-order optical vortices for information transmission in twisted anisotropic optical fibers. J Opt 2021; 23(3): 035603. DOI: 10.1088/2040-8986/abda85.
  25. Nelson DF, Lax M. New symmetry for acousto-optic scattering. Phys Rev Lett 1970; 24(8): 379. DOI: 10.1103/PhysRevLett.24.379.
  26. Alexeyev CN, Volyar AV, Yavorsky MA. Optical vortices in twisted optical fibres with torsional stress. J Opt A: Pure Appl Opt 2008; 10(9): 095007. DOI: 10.1088/1464-4258/10/9/095007.
  27. Bliokh KY, Rodríguez-Fortuño FJ, Nori F, Zayats AV. Spin–orbit interactions of light. Nat Photonics 2015; 9(12): 796-808. DOI: 10.1038/nphoton.2015.201.
  28. Alexeyev CN, Volyar AV, Yavorsky MA. Fiber optical vortices. In Book: Chen LI, ed. Lasers, optics and electro-optics research trends. Ch 5. New York: Nova Publishers; 2007: 131-223.
  29. Alexeyev CN, Barshak EV, Volyar AV, Yavorsky MA. Perturbation theory approach for the wave equation in fibre acousto-optics. J Opt 2010; 12(11): 115708. DOI: 10.1088/2040-8978/12/11/115708.
  30. Lee KF, Thomas JE. Experimental simulation of two-particle quantum entanglement using classical fields. Phys Rev Lett 2002; 88(9): 097902. DOI: 10.1103/PhysRevLett.88.097902.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20