(49-3) 08 * << * >> * Russian * English * Content * All Issues
Prospects for the application of underwater image restoration methods to facilitate marine geological exploration
I.V. Semernik 1, A.A. Taraseko 1, K.V. Samonova 1
1 JSC Yuzhmorgeologia,
Kryimskaya Str. 20, Gelendzhik, 353461, Russia
PDF, 1240 kB
DOI: 10.18287/2412-6179-CO-1520
Pages: 406-434.
Full text of article: Russian language.
Abstract:
This paper provides an overview of modern methods for underwater image restoration and enhancement, as well as an analysis of advantages and disadvantages of the methods when used for the imagery obtained during deep-sea geological exploration.
Due to the fact that the main criteria for choosing a processing method are precisely the accuracy and reliability of underwater image restoration, rather than speed and improved frame perception, it seems most appropriate to choose methods based on the traditional approach and using a priori information about environmental conditions and the relative position of the camera and the underwater object, received from the underwater vehicle sensors.
Keywords:
underwater image restoration, underwater image enhancement, deep-sea geological exploration, deep-sea underwater vehicles, underwater image processing methods.
Citation:
Semernik IV, Tarasenko AA, Samonova KV. Prospects for the application of underwater image restoration methods to facilitate marine geological exploration. Computer Optics 2025; 49(3): 406-434. DOI: 10.18287/2412-6179-CO-1520.
Acknowledgements:
The research was funded by the Russian Science Foundation under grant No. 23-79-01253, https://rscf.ru/project/23-79-01253/.
References:
- Zhou J, Zhang D, Zhang W. Classical and state-of-the-art approaches for underwater image defogging: a comprehensive survey. Front Inf Technol Electron Eng 2020; 21(12): 1745-1769. DOI: 10.1631/FITEE.2000190.
- Zhang W, Dong L, Pan X, Zou P, Qin L, Xu W. A survey of restoration and enhancement for underwater images. IEEE Access 2019; 7: 182259-182279. DOI: 10.1109/ACCESS.2019.2959560.
- Yang M, Hu J, Li C, Rohde G, Du Y, Hu K. An in-depth survey of underwater image enhancement and restoration. IEEE Access 2019; 7: 123638-123657. DOI: 10.1109/ACCESS.2019.2932611.
- Pan T, He X, Zhang X, Liu J, Bai Y, Gong F, Li T. Experimental study on bottom-up detection of underwater targets based on polarization imaging. Sensors 2022; 22(8): 2827. DOI: 10.3390/s22082827.
- Shabalin NV, Korost DV, Chava VA, Nazarenko SA, Sukhov SV, Kirichenko EA, Ints GA, Egorov AA. Towed device for mapping seabed objects and their visual verification [In Russian]. Pat RF of Invent N 2679922 C1 of February 14, 2018, Russian Bull of Inventions N5, 2019.
- Tan C, Sluzek G, He D. A novel applications of range-gated underwater laser imaging system in near target turbid medium. Opt Lasers Eng 2005; 43(9): 995-1009. DOI: 10.1016/j.optlaseng.2004.10.005.
- Li H, Wang X, Bai T, et al. Speckle noise suppression of range gated underwater imaging system. Proc SPIE 2009; 7443: 74432A. DOI: 10.1117/12.831994.
- Zhang T, Li Q, Li Y, Liu X. Underwater optical image restoration method for natural/artificial light. J Mar Sci Eng 2023; 11(3): 470. DOI: 10.3390/jmse11030470.
- Wang Y, Song W, Fortino G, Qi L-Z, Zhang W, Liotta A. An experimental-based review of image enhancement and image restoration methods for underwater imaging. IEEE Access 2019; 7: 140233-140251. DOI: 10.1109/ACCESS.2019.2932130.
- Yu K, Cheng Y, Li L, Zhang K, Liu Y, Liu Y. Underwater image restoration via DCP and Yin–Yang pair optimization. J Mar Sci Eng 2022; 10(3): 360. DOI: 10.3390/jmse10030360.
- Lee HS, Moon SW, Eom IK. Underwater image enhancement using successive color correction and superpixel dark channel prior. Symmetry 2020; 12(8): 1220. DOI: 10.3390/sym12081220.
- Drews P, Nascimento E, Moraes F, Botelho S, Campos M. Transmission estimation in underwater single images. Proc IEEE Int Conference on Computer Vision Workshops 2013: 825-830. DOI: 10.1109/ICCVW.2013.113.
- Jiao Q, Liu M, Li P, Dong L, Hui M, Kong L, Zhao Y. Underwater image restoration via non-convex non-smooth variation and thermal exchange optimization. J Mar Sci Eng 2021; 9(6): 570. DOI: 10.3390/jmse9060570.
- Drews PLJ, Nascimento ER, Botelho SSC, Campos MFM. Underwater depth estimation and image restoration based on single images. IEEE Comput Graph Appl 2016; 36(2): 24-35. DOI: 10.1109/MCG.2016.26.
- Carlevaris-Bianco N, Mohan A, Eustice RM. Initial results in underwater single image dehazing. Oceans 2010 MTS/IEEE Seattle 2010: 1-8. DOI: 10.1109/OCEANS.2010.5664428.
- Du R, Li W, Chen S, Li C, Zhang Y. Unpaired underwater image enhancement based on CycleGAN. Information 2022; 13(1): 1. DOI: 10.3390/info13010001.
- Awan HSA, Mahmood MT. Underwater image restoration through color correction and UW-Net. Electronics 2024; 13(1): 199. DOI: 10.3390/electronics13010199.
- Hu K, Weng C, Zhang Y, Jin J, Xia Q. An overview of underwater vision enhancement: From traditional methods to recent deep learning. J Mar Sci Eng 2022; 10(2): 241. DOI: 10.3390/jmse10020241.
- Ancuti C, Ancuti CO, Haber T, Bekaert P. Enhancing underwater images and videos by fusion. Proc 2012 IEEE Conf on Computer Vision and Pattern Recognition 2012: 81-88. DOI: 10.1109/CVPR.2012.6247661.
- Yang X, Yin C, Zhang Z, Li Y, Liang W, Wang D, Tang Y, Fan H. Robust chromatic adaptation based color correction technology for underwater images. Appl Sci 2020; 10(18): 6392. DOI: 10.3390/app10186392.
- Zhou J, Wei X, Shi J, Chu W, Lin Y. Underwater image enhancement via two-level wavelet decomposition maximum brightness color restoration and edge refinement histogram stretching. Opt Express 2022; 30(10): 17290-17306. DOI: 10.1364/OE.450858.
- Zhang W, Liu W, Li L. Underwater single-image restoration with transmission estimation using color constancy. J Mar Sci Eng 2022; 10(3): 430. DOI: 10.3390/jmse10030430.
- Dixit S, Tiwari SK, Sharma P. Underwater image enhancement using DCP with ACCLAHE and homomorphism filtering. Proc 2016 Int Conf on Signal Processing, Communication, Power and Embedded System (SCOPES) 2016: 2042-2046. DOI: 10.1109/SCOPES.2016.7955807.
- Malathi V, Manikandan A. An enhancement of underwater images using DCP and CLAHE algorithm. Int J Eng Adv Technol 2019; 9(2): 2805-2813. DOI: 10.35940/ijeat.A9607.129219.
- Chang HH, Chen PF, Guo JK, et al. A self-adaptive single underwater image restoration algorithm for improving graphic quality. J Image Video Proc 2020; 2020: 41. DOI: 10.1186/s13640-020-00528-0.
- Song W, Liu Y, Huang D, Zhang B, Shen Z, Xu H. From shallow sea to deep sea: research progress in underwater image restoration. Front Mar Sci 2023; 10: 1163831. DOI: 10.3389/fmars.2023.1163831.
- Tao Y, Dong L, Xu W. A novel two-step strategy based on white-balancing and fusion for underwater image enhancement. IEEE Access 2020; 8: 217651-217670. DOI: 10.1109/ACCESS.2020.3040505.
- Gao F, Wang K, Yang Z, Wang Y, Zhang Q. Underwater image enhancement based on local contrast correction and multi-scale fusion. J Mar Sci Eng 2021; 9(2): 225. DOI: 10.3390/jmse9020225.
- Alsakar YM, Sakr NA, El-Sappagh S, Abuhmed T, Elmogy M. Underwater image restoration and enhancement: A comprehensive review of recent trends, challenges, and applications. 2023. Source: <https://www.preprints.org/manuscript/202307.0585/v1>. DOI: 10.20944/preprints202307.0585.v1.
- Zhao L, Lee S-W. Multi-domain rapid enhancement networks for underwater images. Sensors 2023; 23(21): 8983. DOI: 10.3390/s23218983.
- Yang Hua, Tian Fei, Qi Qi, Wu Q. M. Jonathan, Li Kunqian. Underwater image enhancement with latent consistency learning‐based color transfer. IET Image Process 2022; 16(6): 1594-1612. DOI: 10.1049/ipr2.12433.
- Zheng M, Luo W. Underwater image enhancement using improved CNN based defogging. Electronics 2022; 11(1): 150. DOI: 10.3390/electronics11010150.
- Liu Y, Xu H, Zhang B, Sun K, Yang J, Li B, Li C, Quan X. Model-based underwater image simulation and learning-based underwater image enhancement method. Information 2022; 13(4): 187. DOI: 10.3390/info13040187.
- Akkaynak D, Treibitz T. Sea-Thru: A method for removing water from underwater images. 2019 IEEE/CVF Conf on Computer Vision and Pattern Recognition (CVPR) 2019: 1682-1691. DOI: 10.1109/CVPR.2019.00178.
- Liu D, Zhou J, Xie X, Lin Z, Lin Y. Underwater image restoration via background light estimation and depth map optimization. Opt Express 2022; 30(16): 29099-29116. DOI: 10.1364/OE.462861.
- Peng Y-T, Cosman PC. Underwater image restoration based on image blurriness and light absorption. IEEE Trans Image Process 2017; 26(4): 1579-1594. DOI: 10.1109/TIP.2017.2663846.
- Zhou J, Liu Q, Jiang Q, et al. Underwater camera: Improving visual perception via adaptive dark pixel prior and color correction. Int J Comput Vis 2023. DOI: 10.1007/s11263-023-01853-3. Source: <https://link.springer.com/content/pdf/10.1007/s11263-023-01853-3.pdf>.
- Raihan AJ, Abas PE, De Silva LC. Role of restored underwater images in underwater imaging applications. Appl Syst Innov 2021; 4(4): 96. DOI: 10.3390/asi4040096.
- Zhou J, Yang T, Ren W, Zhang D, Zhang W. Underwater image restoration via depth map and illumination estimation based on a single image. Opt Express 2021; 29(19): 29864-29886. DOI: 10.1364/OE.427839.
- Zhuang Z, Fan Z, Jin H, Gong K, Peng J. Local linear model and restoration method of underwater images. Opt Express 2022; 30(17): 30949-30968. DOI: 10.1364/OE.458816.
- Zhou J, Liu D, Zhang D, Zhang W. Light attenuation and color fluctuation for underwater image restoration. In Book: Wang L, Gall J, Chin T-J, Sato I, Chellappa R, eds. Computer Vision – ACCV 2022. 16th Asian Conference on Computer Vision, Macao, China, December 4–8, 2022, Proceedings, Part III. Cham, Switzerland: Springer Nature Switzerland AG; 2022: 374-389. DOI: 10.1007/978-3-031-26313-2_23.
- Lakshmi MD, Murugan SS. Modified restoration technique for improved visual perception of shallow underwater imagery. Current Sci 2021; 121(1): 103-108. DOI: 10.18520/cs/v121/i1/103-108.
- Park E, Sim J-Y. Underwater image restoration using geodesic color distance and complete image formation model. IEEE Access 2020; 8: 157918-157930. DOI: 10.1109/ACCESS.2020.3019767.
- Berman D, Levy D, Avidan S, Treibitz T. Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans Pattern Anal Mach Intell 2021; 43(8): 2822-2837. DOI: 10.1109/TPAMI.2020.2977624.
- Zhou J, Wang Y, Zhang W, Li C. Underwater image restoration via feature priors to estimate background light and optimized transmission map. Opt Express 2021; 29(18): 28228-28245. DOI: 10.1364/OE.432900.
- Ge WY, Lin Y, Wang Z, Yang T. Multi-prior underwater image restoration method via adaptive transmission. Opt Express 2022; 30(14): 24295-24309. DOI: 10.1364/OE.463865.
- Chang H-H. Single underwater image restoration based on adaptive transmission fusion. IEEE Access 2020; 8: 38650-38662. DOI: 10.1109/ACCESS.2020.2971019.
- Hu Y, Wang K, Zhao X, Wang H, Li Y. Underwater image restoration based on convolutional neural network. Proc 10th Asian Conf on Machine Learning (PMLR) 2018; 95: 296-311.
- Desai C, Reddy BSS, Tabib RA, Patil U, Mudenagudi U. AquaGAN: Restoration of underwater images. 2022 IEEE/CVF Conf Computer Vision and Pattern Recognition Workshops (CVPRW) 2022: 295-303. DOI: 10.1109/CVPRW56347.2022.00044.
- Han J, et al. Single underwater image restoration by contrastive learning. 2021 IEEE Int Geoscience and Remote Sensing Symposium (IGARSS) 2021: 2385-2388. DOI: 10.1109/IGARSS47720.2021.9553857.
- Yan S, Chen X, Wu Z, Tan M, Yu J. HybrUR: A hybrid physical-neural solution for unsupervised underwater image restoration. IEEE Trans Image Process 2023; 32: 5004-5016. DOI: 10.1109/TIP.2023.3309408.
- Mu P, Fang J, Qian H, Bai C. Transmission and color-guided network for underwater image enhancement. 2023 IEEE Int Conf on Multimedia and Expo (ICME) 2023: 1337-1342: DOI: 10.1109/ICME55011.2023.00232.
- Yan K, Lan L, Zheng Z, Wang G, Yang Y. Medium transmission map matters for learning to restore real-world underwater images. Appl Sci 2022; 12(11): 5420. DOI: 10.3390/app12115420.
- Li C, Anwar S, Porikli F. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognition 2020; 98: 107038. DOI: 10.1016/j.patcog.2019.107038.
- Xu Y, Wang H, Cooper GD, Rong S, Sun W. Learning-based dark and blurred underwater image restoration. Complexity 2020; 2020(2): 6549410. DOI: 10.1155/2020/6549410.
- Mello CD, Drews PL, Botelho SC. Degradation-driven underwater image enhancement. 2021 Latin American Robotics Symposium (LARS), 2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in Education (WRE) 2021: 186-191. DOI: 10.1109/LARS/SBR/WRE54079.2021.9605460.
- Mello CD, Moreira BU, Drews PLJ, Botelho SC. Alternative underwater image restoration based on unsupervised learning and autoencoder with degradation block. 2020 Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE) 2020: 1-6. DOI: 10.1109/LARS/SBR/WRE51543.2020.9307136.
- Zhou J, Pang L, Zhang D, Zhang W. Underwater image enhancement method via multi-interval subhistogram perspective equalization. IEEE J Oceanic Eng 2023; 48(2): 474-488. DOI: 10.1109/JOE.2022.3223733.
- Pandey V, Padmakumar A, Padmakumar A, Rasal T, Khandelwal H. Underwater Image Enhancement and Restoration using AI & ML. Int J Res Publ Rev 2023; 4(4): 3372-3377.
- Joel Fathimson J, Bibis S, Aswanth R, Gayatri S. Underwater image restoration using UICCS method in Matlab. Int J New Technol Res 2018; 4(2): 01-06.
- Fu X, Fan Z, Ling M, Huang Y, Ding X. Two-step approach for single underwater image enhancement. 2017 Int Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) 2017: 789-794. DOI: 10.1109/ISPACS.2017.8266583.
- Tian N, Cheng L, Li Y, Li X, Xu N. Enhancing underwater images via color correction and multiscale fusion. Appl Sci 2023; 13(18): 10176. DOI: 10.3390/app131810176.
- Chen E, Ye T, Chen Q, Huang B, Hu Y. Enhancement of underwater images with retinex transmission map and adaptive color correction. Appl Sci 2023; 13(3): 1973. DOI: 10.3390/app13031973.
- Huang S, Wang K, Liu H, Chen J, Li Y. Contrastive semi-supervised learning for underwater image restoration via reliable bank. 2023 IEEE/CVF Conf on Computer Vision and Pattern Recognition (CVPR) 2023; 18145-18155. DOI: 10.1109/CVPR52729.2023.01740.
- Wang Q, Fu B, Fan H. Underwater image enhancement via a channel-wise transmission estimation network. IET Image Process 2023; 17(10): 2958-2971. DOI: 10.1049/ipr2.12845.
- Zhou J, et al. UGIF-Net: An efficient fully guided information flow network for underwater image enhancement. IEEE Trans Geosci Remote Sens 2023; 61: 4206117. DOI: 10.1109/TGRS.2023.3293912.
- Zhang D, Cao W, Zhou J, Peng Y-T, Zhang W, Li Z. Two-branch underwater image enhancement and original resolution information optimization strategy in ocean observation. J Mar Sci Eng 2023; 11(7): 1285. DOI: 10.3390/jmse11071285.
- Zhang D, Zhou J, Guo CL, Zhang W, Li C. Synergistic multiscale detail refinement via intrinsic supervision for underwater image enhancement. arXiv Preprint. 2023. Source: <https://arxiv.org/abs/2308.11932>. DOI: 10.48550/arXiv.2308.11932.
- Wang Z, Shen L, Yu M, Lin Y, Zhu Q. Single underwater image enhancement using an analysis-synthesis network. Journal of Latex Class Files 2015; 14(8). Source: <https://arxiv.org/abs/2108.09023>. DOI: 10.48550/arXiv.2108.09023.
- Ren T, Xu H, Jiang G, Yu M, Luo T. Reinforced swin-convs transformer for underwater image enhancement. Proc 36th Conf on Neural Information Processing (NeurIPS) 2022. Source: <https://arxiv.org/abs/2205.00434>. DOI: 10.48550/arXiv.2205.00434.
- Jiang J, Huang P, Tong L, Yin J, Chen E. LPS-Net: Lightweight parallel strategy network for underwater image enhancement. Appl Sci 2023; 13(16): 9419. DOI: 10.3390/app13169419.
- Zhang D, Wu C, Zhou J, Zhang W, Li C, Lin Z. Hierarchical attention aggregation with multi-resolution feature learning for GAN-based underwater image enhancement. Eng Appl Artif Intell 2023; 125: 106743. DOI: 10.1016/j.engappai.2023.106743.
- Zhang D, Shen J, Zhou J, Chen E, Zhang W. Dual-path joint correction network for underwater image enhancement. Opt Express 2022; 30(18): 33412-33432. DOI: 10.1364/OE.468633.
- Li C, et al. An underwater image enhancement benchmark dataset and beyond. IEEE Trans Image Process 2020; 29: 4376-4389. DOI: 10.1109/TIP.2019.2955241.
- Islam MJ, Xia Y, Sattar J. Fast underwater image enhancement for improved visual perception. IEEE Robot Autom Lett 2020; 5(2): 3227-3234. DOI: 10.1109/LRA.2020.2974710.
- Wang Z, Shen L, Xu M, Yu M, Wang K, Lin Y. Domain adaptation for underwater image enhancement. IEEE Trans Image Process 2023; 32: 1442-1457. DOI: 10.1109/TIP.2023.3244647.
- Gonzalez-Sabbagh S, Robles-Kelly A, Gao S. DGD-cGAN: A dual generator for image dewatering and restoration. Pattern Recognition 2024; 148: 110159. DOI: 10.1016/j.patcog.2023.110159.
- Luo G, He G, Jiang Z, Luo C. Attention-based mechanism and adversarial autoencoder for underwater image enhancement. Appl Sci 2023; 13(17): 9956. DOI: 10.3390/app13179956.
- Zhang T, Liu Y. MTUW-GAN: A multi-teacher knowledge distillation generative adversarial network for underwater image enhancement. Appl Sci 2024; 14(2): 529. DOI: 10.3390/app14020529.
- Chen Y, Li Q, Lu D, Kou L, Ke W, Bai Y, Wang Z. A novel underwater image enhancement using optimal composite backbone network. Biomimetics 2023; 8(3): 275. DOI: 10.3390/biomimetics8030275.
- Han J, Zhou J, Wang L, Wang Y, Ding Z. FE-GAN: Fast and efficient underwater image enhancement model based on conditional GAN. Electronics 2023; 12(5): 1227. DOI: 10.3390/electronics12051227.
- Mousavi M, Estrada R, Ashok A. iDehaze: Supervised underwater image enhancement and dehazing via physically accurate photorealistic simulations. Electronics 2023; 12(11): 2352. DOI: 10.3390/electronics12112352.
- Jia H, Xiao Y, Wang Q, Chen X, Han Z, Tang Y. Underwater image enhancement network based on dual layers regression. Electronics 2024; 13(1): 196. DOI: 10.3390/electronics13010196.
- Wei Y, Zheng Z, Jia X. UHD underwater image enhancement via frequency-spatial domain aware network. In Book: Wang L, Gall J, Chin T-J, Sato I, Chellappa R, eds. Computer Vision – ACCV 2022. 16th Asian Conference on Computer Vision, Macao, China, December 4–8, 2022, Proceedings, Part III. Cham, Switzerland: Springer Nature Switzerland AG; 2023. DOI: 10.1007/978-3-031-26313-2_2.
- Mello CD Jr, Moreira BU, de Oliveira Evald PJD, Drews PJL, Botelho SSC. Self-learning methodology based on degradation estimation for underwater image enhancement. In Book: Xavier-Junior JC, Rios RA, eds. Intelligent Systems. 11th Brazilian Conference, BRACIS 2022, Campinas, Brazil, November 28 – December 1, 2022, Proceedings, Part II. Cham, Switzerland: Springer Nature Switzerland AG; 2022. DOI: 10.1007/978-3-031-21689-3_7.
- Shi Z, Wang Y, Zhou Z, Ren W. Integrating deep learning and traditional image enhancement techniques for underwater image enhancement. IET Image Process 2022; 16(13): 3471-3484. DOI: 10.1049/ipr2.12544.
- Zhu S, Luo W, Duan S. Enhancement of underwater images by CNN-based color balance and dehazing. Electronics 2022; 11(16): 2537. DOI: 10.3390/electronics11162537.
- Yang H, Cai H, Jiang C, Zhang R, Zhang J. Underwater image enhancement via multi-scale feature fusion network guided by medium transmission. Research Square2024. Preprint. Source: <https://www.researchgate.net/publication/379416571_Underwater_Image_Enhancement_via_Multi-Scale_Feature _Fusion_Network_Guided_by_Medium_Transmission/fulltext/66080a4f10ca8679872a67bf/Underwater-Image-Enhancement-via-Multi-Scale-Feature-Fusion-Network-Guided-by-Medium-Transmission.pdf?_ tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19>. DOI: 10.21203/rs.3.rs-4082073/v1.
- Li T, Zhou T. Multi-scale fusion framework via retinex and transmittance optimization for underwater image enhancement. PLoS ONE 2022; 17(9): e0275107. DOI: 10.1371/journal.pone.0275107.
- Li H, Zhuang P, Wang W, Li J. Underwater image enhancement based on dehazingand color correction. Proc 2019 IEEE Int Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking 2019: 1290-1295. DOI: 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00192.
- Qi H, Zhou H, Dong J, Dong X. Deep color-corrected multiscale retinex network for underwater image enhancement. IEEE Trans Geosci Remote Sens 2024; 62: 4200613. DOI: 10.1109/TGRS.2023.3338611.
- Semernik IV, Demyanenko AV, Samonova CV, Bender OV, Tarasenko AA. Modelling of an underwater wireless optical communication channel. 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW) 2023: 468-471. DOI: 10.1109/RSEMW58451.2023.10202133.
- Lerner RM, Summers JD. Monte Carlo description of time- and space-resolved multiple forward scatter in natural water. Appl Opt 1982; 21(5): 861-869. DOI: 10.1364/AO.21.000861.
- Mobley CD, Gentili B, Gordon HR, Jin Z, Kattawar GW, Morel A, Reinersman P, Stamnes K, Stavn RH. Comparison of numerical models for computing underwater light fields. Appl Opt 1993; 32(36): 7484-7504. DOI: 10.1364/AO.32.007484.
- Li C, Dong X, Wang Y, Wang S. Enhancement and optimization of underwater images and videos mapping. Sensors 2023; 23(12): 5708. DOI: 10.3390/s23125708.
- Lin J-C, Hsu C-B, Lee J-C, Chen C-H, Tu T-M. Dilated generative adversarial networks for underwater image restoration. J Mar Sci Eng 2022; 10(4): 500. DOI: 10.3390/jmse10040500.
- Zheng J, Zhao R, Yang G, Liu S, Zhang Z, Fu Y, Lu J. An underwater image restoration deep learning network combining attention mechanism and brightness adjustment. J Mar Sci Eng 2024; 12(1): 7. DOI: 10.3390/jmse12010007.
- Chang S, Gao F, Zhang Q. Underwater image enhancement method based on improved GAN and physical model. Electronics 2023; 12(13): 2882. DOI: 10.3390/electronics12132882.
- Sun B, Mei Y, Yan N, Chen Y. UMGAN: Underwater image enhancement network for unpaired image-to-image translation. J Mar Sci Eng 2023; 11(2): 447. DOI: 10.3390/jmse11020447.
- Jain N, Matta GR, Mitra K. Towards realistic underwater dataset generation and color restoration. Proc Thirteenth Indian Conf on Computer Vision, Graphics and Image Processing (ICVGIP'22) 2022: 29. DOI: 10.1145/3571600.3571630.
- Saleem A, Paheding S, Rawashdeh N, Awad A, Kaur N. A non-reference evaluation of underwater image enhancement methods using a new underwater image dataset. IEEE Access 2023; 11: 10412-10428. DOI: 10.1109/ACCESS.2023.3240648.
- Wang Y, Guo J, He W, Gao H, Yue H, Zhang Z, Li C. Is underwater image enhancement all object detectors need? arXiv Preprint. 2023. Source: <https://arxiv.org/abs/2311.18814>. DOI: 10.48550/arXiv.2311.18814.
- Chen J, Zhu S, Luo W. Instance segmentation of underwater images by using deep learning. Electronics 2024; 13(2): 274. DOI: 10.3390/electronics13020274.
- Liu Z, Zhuang Y, Jia P, Wu C, Xu H, Liu Z. A novel underwater image enhancement algorithm and an improved underwater biological detection pipeline. J Mar Sci Eng 2022; 10(9): 1204. DOI: 10.3390/jmse10091204.
- Wu Z, Ji Y, Song L, Sun J. Underwater image enhancement based on color correction and detail enhancement. J Mar Sci Eng 2022; 10(10): 1513. DOI: 10.3390/jmse10101513.
- Qian J, Li H, Zhang B, Lin S, Xing X. DRGAN: Dense residual generative adversarial network for image enhancement in an underwater autonomous driving device. Sensors 2023; 23(19): 8297. DOI: 10.3390/s23198297.
- Ning Y, Jin Y-P, Peng Y-D, Yan J. Underwater color-cast image enhancement by noise suppression and block effect elimination. J Mar Sci Eng 2023; 11(6): 1226. DOI: 10.3390/jmse11061226.
- Wang Z, Zhang G, Luan K, Yi C, Li M. Image-fused-guided underwater object detection model based on improved YOLOv7. Electronics 2023; 12(19): 4064. DOI: 10.3390/electronics12194064.
- Gong T, Zhang M, Zhou Y, Bai H. Underwater image enhancement based on color feature fusion. Electronics 2023; 12(24): 4999. DOI: 10.3390/electronics12244999.
- Yang M, Yin G, Wang H, Dong N, Xie Z, Zheng B. A underwater sequence image dataset for sharpness and color analysis. Sensors 2022; 22(9): 3550. DOI: 10.3390/s22093550.
- Han J, Shoeiby M, Malthus T, Botha E, Anstee J, Anwar S, Wei R, Armin MA, Li H, Petersson L. Underwater image restoration via contrastive learning and a real-world dataset. Remote Sens 2022; 14(17): 4297. DOI: 10.3390/rs14174297.
- Kim H-G, Seo J, Kim SM. Underwater optical-sonar image fusion systems. Sensors 2022; 22(21): 8445. DOI: 10.3390/s22218445.
- Hou X, Zhang F, Wang Z, Song G, Huang Z, Wang J. DFFA-Net: A differential convolutional neural network for underwater optical image dehazing. Electronics 2023; 12(18): 3876. DOI: 10.3390/electronics12183876.
- Kaplunenko DD, Zotov SS, Subote AE, Fisshenko VK. Application of neural networks for classification of biological objects by underwater cameras of the Popov Island MES [In Russian]. Podvodnye Issledovaniia i Robototehnika 2022; 1(39): 72. DOI: 10.37102/1992-4429_2022_39_01_07.
- Grekov AN, Shishkin YE, Peliushenko SS, Mavrin AS. Application of the YOLOV5 model for the detection of micro-objects in the marine environment [In Russian]. Monitoring Systems of Environment 2022; 4(50): 112-122. DOI: 10.33075/2220-5861-2022-4-112-122.
- Pavin AM. Identification of arbitrary-shaped underwater objects in seabed photographs [In Russian]. Underwater Investigations and Robotics 2011; 2(12): 26-30.
- Hu K, Zhang Y, Lu F, Deng Z, Liu Y. An underwater image enhancement algorithm based on MSR parameter optimization. J Mar Sci Eng 2020; 8(10): 741. DOI: 10.3390/jmse8100741.
- Porto Marques T, Branzan Albu A, Hoeberechts M. A contrast-guided approach for the enhancement of low-lighting underwater images. J Imaging 2019; 5(10): 79. DOI: 10.3390/jimaging5100079.
- Li W, Lin C, Luo T, Li H, Xu H, Wang L. Subjective and objective quality evaluation for underwater image enhancement and restoration. Symmetry 2022; 14(3): 558. DOI: 10.3390/sym14030558.
- Mangeruga M, Cozza M, Bruno F. Evaluation of underwater image enhancement algorithms under different environmental conditions. J Mar Sci Eng 2018; 6(1): 10. DOI: 10.3390/jmse6010010.
- Mangeruga M, Bruno F, Cozza M, Agrafiotis P, Skarlatos D. Guidelines for underwater image enhancement based on benchmarking of different methods. Remote Sens 2018; 10(10): 1652. DOI: 10.3390/rs10101652.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20