(49-3) 07 * << * >> * Russian * English * Content * All Issues

Superstructured addressable fiber Bragg structures
B.I. Valeev 1, R.A. Makarov 1, T.A. Agliullin 1, A.Z. Sakhabutdinov 1, O.G. Morozov 1

Kazan National Research Technical University named after A.N. Tupolev–KAI,
K. Marksa Str. 10, Kazan, 420111, Russia

 PDF, 1539 kB

DOI: 10.18287/2412-6179-CO-1529

Pages: 399-405.

Full text of article: Russian language.

Abstract:
We present results of a theoretical study of capabilities of multi-addressed fiber Bragg structures formed by combining an array of uniform low-reflection fiber Bragg gratings and specially structured discrete phase shifts. The research is based on the mathematical apparatus of scattering and transmission matrices. The obtained results provide new perspectives for the integration of multi-addressed fiber Bragg structures into radiophotonics devices and fiber-optic sensor systems, leading to a new class of both radiophotonic devices and basic passive optical elements. The multi-addressed Bragg structures investigated in this study simultaneously perform the role of radiophotonic beamformers and sensing elements, which ensures the implementation of key general requirements for the components of radiophotonic systems. We also present principles of controlling spectral characteristics of the multi-addressed systems of this type.

Keywords:
fiber Bragg gratings, addressed fiber Bragg structures, multi-addressed fiber Bragg structures.

Citation:
Valeev BI, Makarov RA, Agliullin TA, Sakhabutdinov AZ, Morozov OG. Superstructured addressed fiber Bragg structures. Computer Optics 2025; 49(3): 399-405. DOI: 10.18287/2412-6179-CO-1529.

Acknowledgements:
This work was financially supported by the Russian Science Foundation under project No. 23-79-10059. https://rscf.ru/project/23-79-10059/.

References:

  1. Agrawal GP, Radic S. Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing. IEEE Photonics Technol Lett 1994; 6(8): 995-997. DOI: 10.1109/68.313074.
  2. Chan PKC, Jin W, Gong JM, Demokan NS. Multiplexing of fiber Bragg grating sensors using a FMCW technique. IEEE Photonics Technol Lett 1999; 11(11): 1470-1472. DOI: 10.1109/68.803082.
  3. Wiberg A, Pérez-Millán P, Andrés MV, Hedekvist PO. Microwave-photonic frequency multiplication utilizing optical four-wave mixing and fiber Bragg gratings. J Lightw Technol 2006; 24(1): 329-334. DOI: 10.1109/JLT.2005.860164.
  4. Allil RCSB, Werneck MMM, Ribeiro BA, de Nazaré FVB. Application of fiber Bragg grating sensors in power industry. In Book: Current trends in short- and long-period fiber gratings. Chap 7. London: IntechOpen; 2013. DOI: 10.5772/54148.
  5. Capmany J, NovakvD. Microwave photonics combines two worlds. Nat Photonics 2008; 1(6): 319-330. DOI: 10.1038/nphoton.2007.89.
  6. Zou X, Lu B, Pan W, Yan L, Stöhr A, Yao J. Photonics for microwave measurements. Laser Photonics Rev 2016; 10: 711-734. DOI: 10.1002/lpor.201600019.
  7. Dai B, Gao Z, Wang X, Kataoka N, Wada N. Performance comparison of 0/π- and ±π/2-phase-shifted superstructured Fiber Bragg grating en/decoder. Opt Express 2011; 19(13): 12248-12260. DOI: 10.1364/OE.19.012248.
  8. Wang C, Yao J. Fiber Bragg gratings for microwave photonics subsystems. Opt Express 2013; 21(19): 22868-22884. DOI: 10.1364/OE.21.022868.
  9. Morozov OG, Sakhabutdinov AJ. Addressed Fiber Bragg structures in quasi-distributed microwave-photonic sensor systems. Computer Optics 2019; 43(4): 535-543. DOI: 10.18287/2412-6179-2019-43-4-535-543.
  10. Morozov O, Sakhabutdinov A, Anfinogentov V, Misbakhov R, Kuznetsov A, Agliullin T. Multi-addressed Fiber Bragg structures for microwave-photonic sensor systems. Sensors 2020; 20(9): 2693. DOI: 10.3390/s20092693.
  11. Agliullin T, Il’in G, Kuznetsov A, Misbakhov R, Misbakhov R, Morozov G, Morozov O, Nureev I, Sakhabutdinov A. Overview of addressed Fiber Bragg structures’ development. Photonics 2023; 10(2): 175. DOI: 10.3390/photonics10020175.
  12. El-Gammal HM, El-Badawy ESA, Rizk MRM, Aly MH. A new hybrid FBG with a π-shift for temperature sensing in overhead high voltage transmission lines. Opt Quant Electron 2020; 52(1): 53. DOI: 10.1007/s11082-019-2171-7.
  13. Deepa S, Das B. Interrogation techniques for π-phase-shifted fiber Bragg grating sensor: A review. Sens Actuators A: Phys 2020; 315: 112215. DOI: 10.1016/j.sna.2020.112215.
  14. Grattan KTV, Meggitt BT. Optical fiber sensor technology: Advanced applications – Bragg gratings and distributed sensors. New York: Springer Science+Business Media; 2000. ISBN: 978-1-4419-4999-8.
  15. Tosi D, Poeggel S, Iordachita I, Schena E. Fiber optic sensors for biomedical applications. In Book: Alemohammad H, ed. Opto-mechanical fiber optic sensors. Ch 11. Oxford: Butterworth-Heinemann; 2018. DOI: 10.1016/B978-0-12-803131-5.00011-8.
  16. Morozov O, Tunakova Y, Hussein SMRH, Shagidullin A, Agliullin T, Kuznetsov A, Valeev B, Lipatnikov K, Anfinogentov V, Sakhabutdinov A. Addressed combined fiber-optic sensors as key element of multisensor greenhouse gas monitoring systems. Sensors 2022; 22(13): 4827. DOI: 10.3390/s22134827.
  17. Pradhan S, Town GE, Grant KJ. Dual-wavelength DBR fiber laser. IEEE Photonics Technol Lett 2006; 18(16): 1741-1743. DOI: 10.1109/LPT.2006.880799.
  18. Liu X, Gong Y, Wang L, Wang T, Zhang T, Lu K, Zhao W. Identical dual-wavelength Fiber Bragg gratings. J. Lightw Technol 2007; 25(9): 2706-2710. DOI: 10.1109/JLT.2007.902101.
  19. Erdogan T. Fiber grating spectra. J Lightw Technol 1997; 15(8): 1277-1294. DOI: 10.1109/50.618322.
  20. Kashyap R. Fiber Bragg gratings. Burlington: Academic Press; 2009. ISBN: 978-0-08-091991-1.
  21. Ikhlef A, Hedara R, Chikh-Bled M. Uniform Fiber Bragg grating modeling and simulation used matrix transfer method. Int J Comput Sci 2012; 9(1): 368-374.
  22. Agliullin T, Anfinogentov V, Morozov O, Sakhabutdinov A, Valeev B, Niyazgulyeva A, Garovov Y. Comparative analysis of the methods for Fiber Bragg structures spectrum modeling. Algorithms 2023; 16(2): 101. DOI: 10.3390/a16020101.
  23. Ibsen M, Durkin MK, Laming RI. Chirped moire fiber gratings operating on two-wavelength channels for use as dual-channel dispersion compensators. IEEE Photonics Technol Lett 1998; 10(1): 84-86. DOI: 10.1109/68.651115.
  24. Deng Y, Li M, Huang N, Zhu N, Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted Fiber Bragg grating. IEEE Photonics J 2014; 6(4): 1-8. DOI: 10.1109/JPHOT.2014.2339327.
  25. Kulishov M, Azaña J, Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings. Opt Express 2007; 15(10): 6152-6166. DOI: 10.1364/OE.15.006152.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20