(49-3) 16 * << * >> * Russian * English * Content * All Issues
Development and assessment of Leaf Area Index of Russia's vegetation cover based on multi-angular observations by KMSS (Meteor-M) and neural network inversion of PROSAIL model
D.E. Plotnikov 1, Z. Zhou 2, P.A. Kolbudaev 1, E.A. Loupian 1, A.M. Matveev 1, M.V. Zimin 2, B.S. Zhukov 1, T.V. Kondratieva 1, S.V. Lebedev 3
1 Space Research Institute of the Russian Academy of Sciences,
Profsoyuznaya Str. 84/32, Moscow, 117997, Russia;
2 XMoscow State University,
Leninskie gory 1, Moscow, 119991, Russia;
3 Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences,
9 Yanvarya Str. 29, Orenburg, 460000, Russia
PDF, 3738 kB
DOI: 10.18287/2412-6179-CO-1621
Pages: 504-516.
Full text of article: Russian language.
Abstract:
The paper describes, for the first time, a methodology for Leaf Area Index (LAI) retrieval using a remote sensing device KMSS mounted onboard the Russian satellite Meteor-M with a 60-m spatial resolution. The method is based on the inversion of a PROSAIL radiative transfer model which ingests boundary conditions of the parameters, KMSS surface reflectance data and scene geometrical properties, including observation and illumination conditions. A parameterized and trained fully connected neural network was used as an inversion algorithm. When creating the training sample set, a complete orthogonal plan was used to account for all interactions between input parameters of the model, as well considering their distributions and co-distributions of linked parameters based on a meta-analysis of literature. In this work, the effectiveness of two different geometrical observation schemes was investigated – the classical nadir and the multi-angular, with angles ±8.67°. A reasonably high model accuracy of LAI retrieval was reached: RMSE=1, MAE=0.705 and R2=0.722. Based on the developed method, KMSS-2-based and 60-meters-resolution LAI product was produced and tested over the territory of Russia using 2022-year data. A pixel-wise comparison of KMSS-2 LAI with NASA MODIS LAI product (MCD15A3H) for the snow-free period of the year 2022 also indicate that the proposed product has sufficiently high-level characteristics: RMSE=1.065, MAE=0.669 and R2=0.668. The method for LAI retrieval based on KMSS data developed within this study will increase the efficiency and operability of applications related to detailed environmental monitoring based on remote sensing data from Russian satellite systems.
Keywords:
LAI, KMSS, PROSAIL, Meteor-M, multi-angular observations, neural network inversion, orthogonal plan, vegetation cover, biophysical parameters.
Citation:
Plotnikov DE, Zhou Z, Kolbudaev PA, Loupian EA, Matveev AM, Zimin MV, Zhukov BS, Kondratieva TV, Lebedev SV. Development and assessment of Leaf Area Index of Russia's vegetation cover based on multi-angular observations by KMSS (Meteor-M) and neural network inversion of PROSAIL model. Computer Optics 2025; 49(3): 504-516. DOI: 10.18287/2412-6179-CO-1621.
Acknowledgements:
This research was funded by Russian Science Foundation, project No. 23-27-00412 (https://rscf.ru/project/23-27-00412/).
References:
- Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applications: A meta-review. Remote Sens Environ 2020; 236(5): 111402. DOI: 10.1016/j.rse.2019.111402.
- Waldner F, Schucknecht A, Lesiv M, et al. Conflation of expert and crowd reference data to validate global binary thematic maps. Remote Sens Environ 2019; 221: 235-246. DOI: 10.1016/j.rse.2018.10.039.
- Shabanov NV, Bartalev SA, Eroshenko FV, Plotnikov DE. Development of capabilities for remote sensing estimate of Leaf Area Index from MODIS data [In Russian]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 2018; 15(4): 166-178. DOI: 10.21046/2070-7401-2018-15-4-166-178.
- GCOS, WMO. Systematic observation requirements for satellite-based data products for climate – 2011 update. GCOS, WMO: Geneva, Switzerland; 2011.
- Wang L, Good SP, Caylor KK. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys Res Lett 2014; 41(19): 6753-6757. DOI: 10.1002/2014GL061439.
- Boussetta S, Balsamo G, Beljaars A, Kral T, Jarlan L. Impact of a satellite-derived leaf area index monthly climatology in a global numerical weather prediction model. Int J Remote Sens 2013; 34(9-10): 3520-3542. DOI: 10.1080/01431161.2012.716543.
- Fuster B, Sánchez-Zapero J, Camacho F, García-Santos V, Verger A, Lacaze R, Weiss M, Baret F, Smets B. Quality assessment of PROBA-V LAI, fAPAR and fCOVER collection 300 m products of copernicus global land service. Remote Sens 2020; 12(6): 1017. DOI: 10.3390/rs12061017.
- Yang W, Shabanov NV, Huang D, Wang W, Dickinson RE, Nemani RR, Knyazikhin Y, Myneni RB. Analysis of leaf area index products from combination of MODIS Terra and Aqua data. Remote Sens Environ 2006; 104(3): 297-312. DOI: 10.1016/j.rse.2006.04.016.
- Bacour C, Baret F, Béal D, Weiss M, Pavageau K. Neural network estimation of LAI, fAPAR, fCover and LAI× Cab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sens Environ 2006; 105(4): 313-325. DOI: 10.1016/j.rse.2006.07.014.
- Polyanskiy IV, Zhukov BS, Kondratieva TV, Prokhorova SA, Smetanin PS. Medium-resolution multispectral satellite imaging system for hygrometeorological spacecraft [In Russian]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2019; 16(6): 83-92. DOI: 10.21046/2070-7401-2019-16-6-83-92.
- Plotnikov DE, Kolbudaev PA, Matveev AM, et al. Accuracy assessment of atmospheric correction of KMSS-2 Meteor-M #2.2 Data over Northern Eurasia. Remote Sens 2023; 15(18): 4395. DOI: 10.3390/rs15184395.
- Plotnikov DE, Kolbudaev PA, Loupian EA. An automatic method for subpixel registration of KMSS-M imagery based on coarse-resolution actualized reference. Computer Optics 2022; 46(5): 818-827. DOI: 10.18287/2412-6179-CO-1098.
- Plotnikov DE, Loupian EA, Kolbudaev PA, et al. Daily surface reflectance reconstruction using LOWESS on the example of various satellite systems. VIII Int Conf on Information Technology and Nanotechnology (ITNT) 2022: 1-5. DOI: 10.1109/ITNT55410.2022.9848630.
- Kuusk A. Canopy radiative transfer modeling. In Book: Liang S, ed. Compregensive remote sensing, Volume 3. Oxford: Elsevier; 2018: 9-22. DOI: 10.1016/B978-0-12-409548-9.10534-2.
- Baret F, Buis S. Estimating canopy characteristics from remote sensing observations: Review of methods and associated problems. In Book: Liang S, ed. Advances in land remote sensing. System, modeling, inversion and application. Springer Science+Business Media BV; 2008: 173-201. DOI: 10.1007/978-1-4020-6450-0_7.
- Goel NS. Inversion of canopy reflectance models for estimation of biophysical parameters from reflectance data. In Book: Asrar G, ed. Theory and applications of optical remote sensing. New York: Wiley; 1989: 205-251.
- Berger K, Atzberger C, Danner M, D’Urso G, Mauser W, Vuolo F, Hank T. Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A review study. Remote Sens 2018; 10(1): 85. DOI: 10.3390/rs10010085.
- Bacour C, Jacquemoud S, Leroy M, et al. Reliability of the estimation of vegetation characteristics by inversion of three canopy reflectance models on airborne POLDER data. Agronomie 2002; 22(6): 555-565. DOI: 10.1051/agro:2002039.
- Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A. Hyperband: A novel bandit-based approach to hyperparameter optimization. J Mach Learn Res 2018; 18(1): 6765-6816.
- Feret JB, François C, Asner GP, et al. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ 2008; 112(6): 3030-3043. DOI: 10.1016/j.rse.2008.02.012.
- Féret JB, Gitelson AA, Noble SD, Jacquemoud S. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sens Environ 2017; 193: 204-215. DOI: 10.1016/j.rse.2017.03.004.
- Scurlock JMO. Worldwide historical estimates of leaf area index, 1932-2000. ORNL/TM-2001/268. Oak Ridge National Lab; 2002.
- Weiss M, Baret F, Jay S. S2ToolBox Level 2 products LAI, FAPAR, FCOVER. Research Report. EMMAH-CAPTE, INRAE Avignon; 2020.
- Masson V, Champeaux JL, Chauvin F, Meriguet C, Lacaze R. A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Clim 2003; 16(9): 1261-1282. DOI: 10.1175/1520-0442(2003)16<1261:AGDOLS>2.0.CO;2.
- Baret F, Morissette JT, Fernandes RA, et al. Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: Proposition of the CEOS-BELMANIP. IEEE Trans Geosci Remote Sens 2006; 44(7): 1794-1803. DOI: 10.1109/TGRS.2006.876030.
- Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agric For Meteorol 2004; 121(1-2): 37-53. DOI: 10.1016/j.agrformet.2003.08.001.
- Garrigues S, Shabanov NV, Swanson K, Morisette JT, Baret F, Myneni RB. Intercomparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agric For Meteorol 2008; 148(8-9): 1193-1209. DOI: 10.1016/j.agrformet.2008.02.014.
- Weiss M, Baret F, Leroy M, Hautecœur O, Bacour C, Prevol L, Bruguier N. Validation of neural net techniques to estimate canopy biophysical variables from remote sensing data. Agronomie 2002; 22(6): 547-554. DOI: 10.1051/agro:2002036.
- Liu W, Baret F, Gu X, Zhang B, Tong Q, Zheng L. Evaluation of methods for soil surface moisture estimation from reflectance data. Int J Remote Sens 2003; 24(10): 2069-2083. DOI: 10.1080/01431160210163155.
- Jacquemoud S, Baret F, Hanocq JF. Modeling spectral and bidirectional soil reflectance. Remote Sens Environ 1992; 41(2-3): 123-132. DOI: 10.1016/0034-4257(92)90072-R.
- Myneni R, Knyazikhin Y, Park T. MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500m SIN Grid V061 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. 2024. Source: <https://catalog.data.gov/dataset/modis-terraaqua-leaf-area-index-fpar-4-day-l4-global-500m-sin-grid-v061-73ff7>. DOI: 10.5067/MODIS/MCD15A3H.061.
- Loupian EA, Proshin AA, Bourtsev MA, Balashov IV, Bartalev SA, Efremov VYu, Kashnitskiy AV, Mazurov AA, Matveev AM, Sydneva OA, Sychugov IG, Tolpin VA, Uvarov IA. IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring [In Russian]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2015; 12(5): 263-284. DOI: 10.21046/2070-7401-2017-14-7-136-152.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20