(49-4) 08 * << * >> * Russian * English * Content * All Issues
Helicity of Poincaré beams at the sharp focus
S.S. Stafeev 1,2, V.D. Zaitsev 1,2
1 Image Processing Systems Institute, NRC "Kurchatov Institute",
Molodogvardeyskaya Str. 151, Samara, 443001, Russia;
2 Samara National Research University,
Moskovskoye Shosse 34, Samara,443086, Russia
PDF, 726 kB
DOI: 10.18287/2412-6179-CO-1620
Pages: 588-592.
Full text of article: Russian language.
Abstract:
In this study, helicity of Poincaré beams was considered from the point of view of the Richards-Wolf formalism. It was shown that helicity for Poincaré beams always has radial symmetry and does not depend on the azimuthal angle of the beam. The absolute value of helicity was shown to be maximum when the polar angle of the beam was zero or π, being zero at the angle π/2. Non-zero values of helicity on the optical axis were observed for beam orders of 0, 1, and 2. If the polar angle of the beam was zero, the intensity of Poincaré beams was revealed to coincide with the helicity up to a factor.
Keywords:
sharp focusing, Richards-Wolf formulas, helicity, chirality, Poincare beams.
Citation:
Stafeev SS, Zaitsev VD. Helicity of Poincaré beams at the sharp focus. Computer Optics 2025; 49(4): 588-592. DOI: 10.18287/2412-6179-CO-1620.
Acknowledgements:
This work was partly funded by the Russian Science Foundation under grant 23-12-00236 ("Theory" Section) and the government project of the NRC "Kurchatov Institute" ("Numerical Simulation" Section).
References:
- Beckley AM, Brown TG, Alonso MA. Full Poincaré beams. Opt Express 2010; 18(10): 10777-10785. DOI: 10.1364/OE.18.010777.
- Chen S, Zhou X, Liu Y, Ling X, Luo H, Wen S. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere. Opt Lett 2014; 39(18): 5274-5276. DOI: 10.1364/OL.39.005274.
- Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photonics 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
- Kotlyar VV, Stafeev SS, Zaitsev VD, Telegin AM. Poincaré beams at the tight focus: Inseparability, radial spin hall effect, and reverse energy flow. Photonics 2022; 9(12): 969. DOI: 10.3390/photonics9120969.
- Galvez EJ, Khadka S, Schubert WH, Nomoto S. Poincaré-beam patterns produced by nonseparable superpositions of Laguerre–Gauss and polarization modes of light. Appl Opt 2012; 51(15): 2925-2934. DOI: 10.1364/AO.51.002925.
- Kotlyar VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a light beam with phase or polarization singularity. Phys Rev A 2019; 99: 033840. DOI: 10.1103/PhysRevA.99.033840.
- Leyder C, Romanelli M, Karr JP, Giacobino E, Liew TCH, Glazov MM, Kavokin AV, Malpuech G, Bramati A. Observation of the optical spin Hall effect. Nat Phys 2007; 3: 628-631. DOI: 10.1038/nphys676.
- Kotlyar VV, Kovalev AA, Telegin AM, Kozlova ES. Polarization strips in the focus of a generalized Poincaré beam. Photonics 2024; 11(5): 430. DOI: 10.3390/photonics11050430.
- Li D, Feng S, Nie S, Chang C, Ma J, Yuan C. Generation of arbitrary perfect Poincaré beams. J Appl Phys 2019; 125(7): 073105. DOI: 10.1063/1.5079850.
- Gu Z, Yin D, Gu F, Zhang Y, Nie S, Feng S, Ma J, Yuan C. Generation of concentric perfect Poincaré beams. Sci Rep 2019; 9: 15301. DOI: 10.1038/s41598-019-50705-z.
- Liu M, Huo P, Zhu W, Zhang C, Zhang S, Song M, Zhang S, Zhou Q, Chen L, Lezec HJ, Agrawal A, Lu Y, Xu T. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat Commun 2021; 12: 2230. DOI: 10.1038/s41467-021-22462-z.
- Bliokh KY, Kivshar YS, Nori F. Magnetoelectric Effects in Local Light-Matter Interactions. Phys Rev Lett 2014; 113: 033601. DOI: 10.1103/PhysRevLett.113.033601.
- Lipkin DM. Existence of a new conservation law in electromagnetic theory. J Math Phys 1964; 5(5): 696-700. DOI: 10.1063/1.1704165.
- Tang Y, Cohen AE. Optical chirality and its interaction with matter. Phys Rev Lett 2010; 104: 163901. DOI: 10.1103/PhysRevLett.104.163901.
- Mun J, Kim M, Yang Y, Badloe T, Ni J, Chen Y, Qiu CW, Rho J. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light Sci Appl 2020; 9: 139. DOI: 10.1038/s41377-020-00367-8.
- Abujetas DR, Sánchez-Gil JA. Spin angular momentum of guided light induced by transverse confinement and intrinsic helicity. ACS Photonics 2020; 7(2): 534-545. DOI: 10.1021/acsphotonics.0c00064.
- Lin S, Wang D, Zheng Y, Guo L, Zhang Y, Zhuang Y, Huang L. Helicity and topological charge tunable optical vortex based on a Hermite-Gaussian beam dynamically controlled folded-cavity resonator. Front Phys 2023; 11: 1192257. DOI: 10.3389/fphy.2023.1192257.
- Berry MV, Dennis MR. Phase singularities in isotropic random waves. Proc R Soc London A 2000; 456(2001): 2059-2079. DOI: 10.1098/rspa.2000.0602.
- Babiker M, Yuan J, Koksal K, Lembessis VE. The super-chirality of vector twisted light. Opt Commun 2024; 554: 130185. DOI: 10.1016/j.optcom.2023.130185.
- Forbes KA. Comment on M. Babiker, J. Yuan, K. Koksal, and V. Lembessis, Optics Communications 554, 130185 (2024). Opt Commun 2024; 561: 130499. DOI: 10.1016/j.optcom.2024.130499.
- Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc R Soc A 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
- Rashid M, Maragò OM, Jones PH. Focusing of high order cylindrical vector beams. J Opt A 2009; 11(6): 065204. DOI: 10.1088/1464-4258/11/6/065204.
- Kovalev AA, Kotlyar VV, Telegin AM. Optical helicity of light in the tight focus. Photonics 2023; 10(7): 719. DOI: 10.3390/photonics10070719.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20