(49-5) 08 * << * >> * Russian * English * Content * All Issues

Development of technology for choroidal state assessment based on pre-processing and quantitative analysis of void images from angio-OCT data
N.Yu. Ilyasova 1,2, R.T. Samigullin 1, D.V. Kirsh 1,2, N.S. Demin 1,2

Samara National Research University,
Moskovskoye Shosse 34, Samara, 443086, Russia;
Image Processing Systems Institute, NRC "Kurchatov Institute",
Molodogvardeyskaya 151, Samara, 443001, Russia

 PDF, 3673 kB

DOI: 10.18287/2412-6179-CO-1661

Pages: 767-774.

Full text of article: Russian language.

Abstract:
This paper presents a technology of selecting regions of interest in retinal angio-OCT images for conducting a quantitative analysis of choroidal parameters for the eye disease detection. The relevance of the research is evident from an important role of the choroid in the eye, which provides nourishment to the retina, thus ensuring its normal functioning. Abnormalities in choroid functioning lead to various eye diseases, including degenerative retinal diseases and glaucoma. We propose a method of choroidal condition assessment based on finding areas of vascular signal absence in the retinal angio-OCT images. A comparative analysis of the applicability of the proposed features for the classification of normality and pathology is carried out. The results of study obtained under different parameters of the algorithm of feature calculation reveal that the developed technology shows promise for designing a classifier. The results presented can be useful for specialists in ophthalmology and help to improve the diagnosis and treatment of eye diseases.

Keywords:
biomedical images, optical coherence tomography images, thresholding, choroid, quantitative features, quantitative analysis.

Citation:
Ilyasova NY, Samigullin RT, Kirsh DV, Demin NS. Development of technology for choroidal state assessment based on pre-processing and quantitative analysis of void images from angio-OCT data. Computer Optics 2025; 49(5): 767-774. DOI: 10.18287/2412-6179-CO-1661.

Acknowledgements:
This work was carried out within the state assignment theme FSSS-2023-006 (Theoretical and experimental part) and within the government project of the NRC “Kurchatov Institute” (Software implementation).

References:

  1. Raja H, Akram MU, Hassan T, Ramzan A, Aziz A, Raja H. Glaucoma detection using optical coherence tomography images: a systematic review of clinical and automated studies. IETE J Res 2023; 69(11): 7958-7978. DOI: 10.1080/03772063.2022.2043783.
  2. Breher K, Terry L, Bower T, Wahl S. Choroidal biomarkers: a repeatability and topographical comparison of choroidal thickness and choroidal vascularity index in healthy eyes. Transl Vis Sci Technol 2020; 9(11): 8. DOI: 10.1167/tvst.9.11.8.
  3. Ilyasova NYu, Demin NS, Shirokanev AS, Kupriyanov AV, Zamytskiy EA. Method for selection macular edema region using optical coherence tomography data. Computer Optics 2020; 44(2): 250-258. DOI: 10.18287/2412-6179-CO-691.
  4. IlyasovaNY, Kirsh DV, DeminNS. Decision-making support system for the personalization of retinal laser treatment in diabetic retinopathy. Computer Optics 2022; 46(5): 774-782. DOI: 10.18287/2412-6179-CO-1129.
  5. Paringer RA, Mukhin AV, IlyasovaNY, DeminNS. Neural networks application for semantic segmentation of fundus. Computer Optics 2022; 46(4): 596-602. DOI: 10.18287/2412-6179-CO-1010.
  6. Bhandary SV, Adigal SS, Lukose J, John RV, Rizvi A, Chidangil S. Human eye lens fluid analysis using high-performance liquid chromatography-led-induced fluorescence to explore cataract: A pilot study. J Biomed Photonics Eng 2024; 10(3): 030302. DOI: 10.18287/jbpe24.10.030302.
  7. An G, Omodaka K, Hashimoto K, et al. Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images. J Healthc Eng 2019; 2019: 4061313. DOI: 10.1155/2019/4061313.
  8. Hassan B, Ahmed R, Li B, Hassan O, Hassan T. Automated retinal edema detection from fundus and optical coherence tomography scans. 2019 5th International Conference on Control, Automation and Robotics (ICCAR) 2019: 325-330. DOI: 10.1109/ICCAR.2019.8813311.
  9. Nassisi M, Baghdasaryan E, Tepelus T, Asanad S, Borrelli E, Sadda SR. Topographic distribution of choriocapillaris flow deficits in healthy eyes. PloS one 2018; 13(11): e0207638. DOI: 10.1371/journal.pone.0207638.
  10. Parvathi ML, Bright BA, Damodaran V. Spectrometer design for an 840 NM spectral domain optical coherence tomography system. J Biomed Photonics Eng 2023; 9(3): 030316. DOI: 10.18287/jbpe23.09.030316.
  11. Chu Z, Zhou H, Cheng Y, Zhang Q, Wang RK. Improving visualization and quantitative assessment of choriocapillaris with swept source OCTA through registration and averaging applicable to clinical systems. Sci Rep 2018; 8(1): 16826. DOI: 10.1038/s41598-018-34826-5.
  12. Zhang L, et al. Automated segmentation of the choroid from clinical SD-OCT. Invest Ophthalmol Vis Sci 2012; 53(12): 7510-7519. DOI: 10.1167/iovs.12-10311.
  13. Gupta C, et al. Choroidal structural analysis in eyes with diabetic retinopathy and diabetic macular edema – A novel OCT based imaging biomarker. PLoS One 2018; 13(12): e0207435. DOI: 10.1371/journal.pone.0207435.
  14. Sohrab M, Wu K, Fawzi AA. A pilot study of morphometric analysis of choroidal vasculature in vivo, using en face optical coherence tomography. PloS One 2012; 7(11): e48631. DOI: 10.1371/journal.pone.0048631.
  15. Sekiryu T. Choroidal imaging using optical coherence tomography: techniques and interpretations. Jpn J Ophthalmol 2022; 66(3): 213-226. DOI: 10.1007/s10384-022-00902-7.
  16. Yan Q, Ma Y, Wu W, Mou L, Huang W, Cheng J, Zhao Y. Choroidal layer analysis in OCT images via ambiguous boundary-aware attention. Comput Biol Med 2024; 175: 108386. DOI: 10.1016/j.compbiomed.2024.108386.
  17. Halavataya KA, Kozadaev KV, Sadau VS. Adjusting videoendoscopic 3D reconstruction results using tomographic data. Computer Optics 2022; 46(2): 246-251. DOI: 10.18287/2412-6179-CO-910.
  18. Kolchev AA, Pasynkov DV, Egoshin IA, Kliouchkin IV, Pasynkova OO. Classification of benign and malignant solid breast lesions on the ultrasound images based on the textural features: the importance of the perifocal lesion area. Computer Optics 2024; 48(1): 157-165. DOI: 10.18287/2412-6179-CO-1244.
  19. Spaide RF. Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol 2016; 170: 58-67. DOI: 10.1016/j.ajo.2016.07.023.
  20. Burnasheva MA, Kulikov AN, Maltsev DS. Artifact-free evaluation of choriocapillaris perfusion in central serous chorioretinopathy. Vision 2020; 5(1): 3. DOI: 10.3390/vision5010003.
  21. Chu Z, Zhang Q, Gregori G, Rosenfeld PJ, Wang RK. Guidelines for imaging the choriocapillaris using OCT angiography. Am J Ophthalmol 2021; 222: 92-101. DOI: 10.1016/j.ajo.2020.08.045.
  22. Chua J, Chin CWL, Tan B, et al. Impact of systemic vascular risk factors on the choriocapillaris using optical coherence tomography angiography in patients with systemic hypertension. Sci Rep 2019; 9(1): 5819. DOI: 10.1038/s41598-019-41917-4.
  23. Scripsema SA, Shah NK, Chui CM, et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 2015; 35(11): 2353-2363. DOI: 10.1097/IAE.0000000000000862.
  24. Loria O, Kodjikian L, Denis P, et al. Quantitative analysis of choriocapillaris alterations in swept-source optical coherence tomography angiography in diabetic patients. Retina 2021; 41(9): 1809-1818. DOI: 10.1097/IAE.0000000000003102.
  25. Tan KA, Laude A, Yip V, et al. Choroidal vascularity index–a novel optical coherence tomography parameter for disease monitoring in diabetes mellitus? Acta Ophthalmol 2016; 94(7): e612-e616. DOI: 10.1111/aos.13044.
  26. Zhang Q, Zheng F, Motulsky EH, et al. A novel strategy for quantifying choriocapillaris flow voids using swept-source OCT angiography. Invest Ophthalmol Vis Sci 2018; 59(1): 203-211. DOI: 10.1167/iovs.17-22953.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20