(49-5) 07 * << * >> * Russian * English * Content * All Issues
Interference suppression in digital holographic images
N.N. Yudin 1,2,3, G.S. Geimbukh 1, V.S. Kuznetsov 2, M.M. Zinoviev 2,3, M.M. Kulesh 1,2, S.N. Podzyvalov 2, E.S. Slyunko 2, H. Baalbaki 2
1 “IGS” Ltd.,
28 Vladimir Vysotsky Str., Bld.7, 634040, Tomsk, Russia;
2 National Research Tomsk State University,
36 Prospekt Lenina, Tomsk, 634050, Russia;
3 V.E. Zuev Institute of Optics and Atmosphere, Siberian Branch of the Russian Academy of Sciences,
1 Academika Zueva Pl., Tomsk, Russia
PDF, 11 MB
DOI: 10.18287/2412-6179-CO-1596
Pages: 758-766.
Full text of article: Russian language.
Abstract:
This paper presents a digital filtering software module for noise suppression in reconstructed holographic images and in original digital holograms. In the core of the developed module is a direct two-dimensional Fourier transform applied to the holographic image. In the obtained Fourier image of the hologram, the algorithm determines pixels carrying information about interference with white color brightness (grayscale palette) below a certain threshold (in our case, based on experimental results, a threshold of 50 was chosen). Then, using an averaging operator, the brightness of such pixels is brought to the brightness value of the surrounding pixels, creating a blurring effect. After filtering, an inverse two-dimensional Fourier transform is applied to obtain a noise-free digital filtered image of the coordinate plane. Based on the results of processing of numerous digital holograms, it is revealed that the developed module can remove interference without loss of information about the shape and location of the registered objects.
Keywords:
digital holography, digital holographic camera, flaw detection, direct two-dimensional Fourier transform, inverse two-dimensional Fourier transform.
Citation:
Yudin NN, Geimbukh GS, Kuznetsov VS, Zinoviev MM, Kulesh MM, Podzyvalov SN, Slyunko ES, Baalbaki H. Interference suppression in digital holographic images. Computer Optics 2025; 49(5): 758-766. DOI: 10.18287/2412-6179-CO-1596.
Acknowledgements:
The work was funded by the Ministry of Education and Science of the Russian Federation within a government project FSWM-2020-0038.
References:
- Dyomin VV, Gribenyukov AI, Davydova AS, Zinoviev MM, Olshukov AS, Podzyvalov SN, Polovtsev IG, Yudin NN. Holography of particles for diagnostics tasks [Invited]. Appl Opt 2019; 58(34): G300-G309. DOI: 10.1364/AO.58.00G300.
- Dyomin VV, Kamenev DV. A comparison of methods for evaluating the location of the best focusing planes of particle images reconstructed from digital holograms. Russ Phys J 2013; 56(7): 822-830. DOI: 10.1007/s11182-013-0105-6.
- Dyomin VV, Gribenyukov AI, Podzyvalov SN, Yudin NN, Zinoviev MM, Polovtsev IG, Davydova AS, Olshukov AS. Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2. Appl Sci 2020; 10(2): 442. DOI: 10.3390/app10020442.
- Yudin NN, Pavlov PV, Zinov’ev MM, Podzyvalov SN, Dyomin VV, Polovtsev IG, Kuskov IE, Vol’f IE, Evsin AO, Balashov AA, Kostin AS. Assessment of fatigue damage of fluoroorganic aircraft glass using digital holography methods. J Opt Technol 2021; 88(2): 72-76. DOI: 10.17586/1023-5086-2021-88-02-20-26.
- Tang J, Zhang J, Wu J, Di J, Zhao J. Coherent noise suppression of single-shot digital holographic phase via an untrained self-supervised network. Front Photonics 2022; 3: 907847. DOI: 10.3389/fphot.2022.907847.
- Leith EN, Upatnieks J. Reconstructed wave fronts and communication theory J Opt Soc An 1962; 52(10): 1123-1130. DOI: 10.1364/JOSA.52.001123.
- Xu L, Miao J, Asundi A. Properties of digital holography based on in-line configuration. Opt Eng 2000; 39(12): 3214-3219. DOI: 10.1117/1.1327503.
- Goodman JW. Origins and manifestations of speckle. Speckle phenomena in optics: Theory and applications. Bellingham, Washington: SPIE Press; 2020: 1-6. ISBN: 978-0974707792.
- Nomura T, Okamura M, Nitanai E, Numata T. Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths. Appl Opt 2008; 47(19): D38-D43. DOI: 10.1364/ao.47.000d38.
- Shin S, Kim K, Lee KR, Park YK. Effects of spatiotemporal coherence on interferometric microscopy. Opt Express 2017; 25(7): 8085-8097. DOI: 10.1364/OE.25.008085.
- Nomura T, Okamura M, Nitanai E, Numata T. Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths. Appl Opt 2008; 47(19): D38-D43. DOI: 10.1364/ao.47.000d38.
- Gribenyukov AI, Yudin NN, Podzyvalov SN, Zinoviev MM, Olshukov AS, Shumeiko AS, Soldatov AN, Yudin NA. Visualization of volumetric defects in a ZnGeP2 single-crystal by digital holography method using strontium vapor laser radiation. Opt Mem Neural Netw 2020; 29: 147-156. DOI: 10.3103/S1060992X20020034.
- Schnars U. Digital hologram recording, numerical reconstruction, and related techniques. Berlin: Sprinder, 2005. DOI: 10.1007/b138284.
- Collier R, Burkhart C, Lin L. Optical holography. New York: Academic Press; 1971.
- Spring KR, Russ JC, Parry-Hill MJ, Fellers TJ, Davidson MV. Interactive tutorials. Image averaging and noise removal. 2024. Source: <https://micro.magnet.fsu.edu/primer/java/digitalimaging/processing/imageaveraging/index.html>.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20