(48-3) 01 * << * >> * Русский * English * Содержание * Все выпуски

Cпин-орбитальное преобразование светового поля сразу за идеальной сферической линзой
В.В. Котляр 1,2, А.А. Ковалев 1,2, С.С. Стафеев 1,2, Е.С. Козлова 1,2, А.М. Телегин 2

Институт систем обработки изображений, НИЦ «Курчатовский институт»,,
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151;
Самарский национальный исследовательский университет имени академика С.П. Королёва,,
443086, Россия, г. Самара, Московское шоссе, д. 34

  PDF, 918 kB

DOI: 10.18287/2412-6179-CO-1447

Страницы: 325-333.

Аннотация:
Формулы Ричардса–Вольфа не только адекватно описывают световое поле в остром фокусе, но и позволяют описать световое поле сразу за идеальной сферической линзой, то есть на сходящемся сферическом волновом фронте. Зная все проекции векторов напряженности светового поля сразу за линзой, можно найти продольные компоненты спинового и орбитального угловых моментов. При этом продольная проекция спинового углового момента сразу за линзой либо остается нулем, либо уменьшается. Это означает, что сразу за линзой проявляется эффект спин-орбитального преобразования, когда часть «спина переходит в орбиту». При этом сумма продольных проекций спинового и орбитального угловых моментов сохраняется. Что касается спинового эффекта Холла, то он не формируется сразу за линзой, а появляется по мере фокусировки. То есть сразу за линзой нет эффекта Холла, а в фокусе он максимальный. Это происходит потому, что сразу за линзой формируются два оптических вихря с топологическими зарядами 2 и –2 и со спином разного знака, то есть с левой и правой круговой поляризацией. Но так как амплитуды этих вихрей одинаковые, то суммарный спин равен нулю. По мере фокусировки и в самом фокусе амплитуда у оптических вихрей становится разной, и поэтому появляются области со спином разного знака (эффект Холла). Например, если в начальном поле присутствовал оптический вихрь с топологическим зарядом n и линейной поляризацией, то сразу за линзой появятся два дополнительных оптических вихря с топологическими зарядами n+2 и n–2 и разными спинами. Эти вихри распространяются с разной расходимостью, и поэтому в фокусе будут иметь разную амплитуду, и их спины уже не будут компенсировать друг друга. Также найден общий вид начальных световых полей, у которых в фокусе продольная компонента поля нулевая. В этом случае у вектора спинового углового момента отличной от нуля может быть только продольная компонента. Вектор спинового углового момента, вытянутый в фокусе только вдоль оптической оси, используют в задачах магнетизации..

Ключевые слова:
спиновый угловой момент, орбитальный угловой момент, топологический заряд, эффект Холла, спин-орбитальная конверсия, формулы Ричардса–Вольфа, острая фокусировка.

Благодарности
Работа выполнена в рамках выполнения работ по Государственному заданию НИЦ «Курчатовский институт» в части «Введение» и «Заключение» и при поддержке Российского научного фонда (проект № 23-12-00236) в части теории и моделирования.

Цитирование:
Котляр, В.В. Cпин-орбитальное преобразование светового поля сразу за идеальной сферической линзой / В.В. Котляр, А.А. Ковалев, С.С. Стафеев, Е.С. Козлова, А.М. Телегин // Компьютерная оптика. – 2024. – Т. 48, № 3. – С. 325-333. – DOI: 10.18287/2412-6179-CO-1447.

Citation:
Kotlyar VV, Kovalev AA, Stafeev SS, Kozlova ES, Telegin AM. Spin-orbital conversion of the light field immediately behind an ideal spherical lens. Computer Optics 2024; 48(3): 325-333. DOI: 10.18287/2412-6179-CO-1447.

References:

  1. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992; 45(11): 8185-8189. DOI: 10.1103/PhysRevA.45.8185.
  2. Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 2011; 3(2): 161. DOI: 10.1364/AOP.3.000161.
  3. Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery MPJ, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S. Optical communications using orbital angular momentum beams. Adv Opt Photonicsm 2015; 7(1): 66-106. DOI: 10.1364/AOP.7.000066.
  4. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340(6140): 1545-1548. DOI: 10.1126/science.1237861.
  5. Ding D-S, Zhou Z-Y, Shi B-S, Zou X-B, Guo G-C. Linear up-conversion of orbital angular momentum. Opt Lett 2012; 37(15): 3270-3272. DOI: 10.1364/OL.37.003270.
  6. Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, three-dimensional entanglement for quantum communication. Phys Rev Lett 2002; 89(24): 240401. DOI: 10.1103/PhysRevLett.89.240401.
  7. Zou XB, Mathis W. Scheme for optical implementation of orbital angular momentum beam splitter of a light beam and its application in quantum information processing. Phys Rev A 2005; 71(4): 042324. DOI: 10.1103/PhysRevA.71.042324.
  8. Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C. Overcoming the Rayleigh criterion limit with optical vortices. Phys Rev Lett 2006; 97(16): 163903. DOI: 10.1103/PhysRevLett.97.163903.
  9. MacDonald MP, Paterson L, Volke-Sepulveda K, Arlt J, Sibbett W, Dholakia K. Creation and manipulation of three-dimensional optically trapped structures. Science 2002; 296(5570): 1101-1103. DOI: 10.1126/science.1069571.
  10. Padgett M, Bowman R. Tweezers with a twist. Nat Photonics 2011; 5(6): 343-348. DOI: 10.1038/nphoton.2011.81.
  11. Molina-Terriza G, Torres JP, Torner L. Twisted photons. Nat Phys 2007; 3(5): 305-310. DOI: 10.1038/nphys607.
  12. Molloy JE, Padgett MJ. Lights, action: optical tweezers. Contemp Phys 2002; 43(4): 241-258. DOI: 10.1080/0010751011011605.
  13. Beijersbergen MW, Coerwinkel RPC, Kristensen M, Woerdman JP. Helical-wavefront laser beams produced with a spiral phaseplate. Opt Commun 1994; 112(5-6): 321. DOI: 10.1016/0030-4018(94)90638-6.
  14. Karimi E, Piccirillo B, Nagali E, Marrucci L, Santamato E. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl Phys Lett 2009; 94(23): 231124. DOI: 10.1063/1.3154549.
  15. Heckenberg NR, McDuff R, Smith CP, White AG. Generation of optical phase singularities by computer-generated holograms. Opt Lett 1992; 17(3): 221-223. DOI: 10.1364/OL.17.000221.
  16. Liu X, Huang S, Xie W, Pei Z. Topological charge parallel measurement method for optical vortices based on computer-generated holography. J Opt Technol 2022; 89(2): 94-100. DOI: 10.1364/JOT.89.000094.
  17. Li R, Ren Y, Liu T, Wang C, Liu Z, Zhao J, Sun R, Wang Z. Generating large topological charge Laguerre–Gaussian beam based on 4K phase-only spatial light modulator. Chin Opt Lett 2022; 20: 120501. DOI: 10.3788/COL202220.120501.
  18. Lv S, Bai Y, Luo W, Meng F, Wang R. Design of a vortex metalens with high focusing efficiency using propagation phase. Appl Opt 2022; 61(21): 6311-6315. DOI: 10.1364/AO.464090.
  19. Shen Z, Xiang Z, Wang Z, Shen Y, Zhang B. Optical spanner for nanoparticle rotation with focused optical vortex generated through a Pancharatnam–Berry phase metalens. Appl Opt 2021; 60(16): 4820-4826. DOI: 10.1364/AO.425892.
  20. Cao G, Lin H, Jia B, Yuan X, Somekh M, Wei S. Design of a dynamic multi-topological charge graphene orbital angular momentum metalens. Opt Express 2023; 31(2): 2102-2111. DOI: 10.1364/OE.480946.
  21. Zhu J, Wenjing S, Dong Z. Directionally duplexed all-dielectric metalens for multifunctional structured light generation. Opt Lett 2023; 48(15): 4013-4016. DOI: 10.1364/OL.495014.
  22. Hao Q, Wang W, Hu Y, Zhang S, Zhang S, Zhang Y. Independent and intensity-adjustable dual-focused vortex beams via a helicity-multiplexing metalens. Opt Mater Express 2022; 12(10): 3872-3881. DOI: 10.1364/OME.465726.
  23. Nalimov AG, Kotlyar VV. Multifocal metalens for detecting several topological charges at different wavelengths. Computer Optics 2023; 47(2): 201-207. DOI: 10.18287/2412-6179-CO-1170.
  24. Guo Y, Zhang S, Luo X. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 2021; 10: 63. DOI: 10.1038/s41377-021-00497-7.
  25. Jin Z, Janoschka D, Deng J, Ge L, Dreher P, Frank B, Hu G, Ni J, Yang Y, Li J, Yu G, Lei D, Li G, Xiao S, Mei S, Giessen H, zu Heringdorf FM, Qiu C-W. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 2021; 1: 5. DOI: 10.1186/s43593-021-00005-9.
  26. Kotlyar VV, Stafeev SS, Nalimov AG, O’Faolain L, Kotlyar MV. A dual-functionality metalens to shape a circularly polarized optical vortex or a second-order cylindrical vector beam. Photonics Nanostruct 2021; 43: 100898. DOI: 10.1016/j.photonics.2021.100898.
  27. Nalimov AG, Kotlyar VV. Topological charge of optical vortices in the far field with an initial fractional charge: optical “dipoles”. Computer Optics 2022; 46(2): 189-195. DOI: 10.18287/2412-6179-CO-1073.
  28. Kotlyar VV, Kovalev AA, Telegin AM. Angular and orbital angular momenta in the tight focus of a circularly polarized optical vortex. Photonics 2023; 10(2): 160. DOI: 10.3390/photonics10020160..

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20