(48-3) 01 * << * >> * Russian * English * Content * All Issues

Spin-orbital conversion of the light field immediately behind an ideal spherical lens
V.V. Kotlyar 1,2, A.A. Kovalev 1,2, S.S. Stafeev 1,2, E.S. Kozlova 1,2, M.A. Telegin 2

Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 918 kB

DOI: 10.18287/2412-6179-CO-1447

Pages: 325-333.

Full text of article: Russian language.

Abstract:
The Richards-Wolf equations not only adequately describe a light field distribution at the sharp focus, but are also able to describe a light field distribution just behind an ideal spherical lens, i.e. on a converging spherical wavefront. Knowing all projections of light field strength vectors behind the lens, longitudinal components of the spin angular momentum and orbital angular momentum (SAM and OAM) can be derived. In this case, the longitudinal projection of the SAM just behind the lens either remains zero or decreases. This means that the spin-orbital conversion (SOC), where part of the “spin transfers orbit”, occurs just behind the ideal spherical lens. Notably, the sum of the longitudinal projections of SAM and OAM is conserved. Regarding the spin Hall effect, it is revealed that rather than forming just behind the lens, it appears as focusing occurs. Thus, we find that while just behind the lens there is no Hall effect, it becomes maximally pronounced in the focal plane. It is because just behind the ideal spherical lens, two optical vortices with topological charges (TCs) –2 and 2 and opposite-sign spins (with right and left circular polarization) are generated. However, the total spin is equal to zero because the two vortices have the same amplitudes. The amplitudes of the optical vortices become different in the course of focusing and in the focal plane and, therefore, areas with opposite-sign spins (Hall effect) are formed. We also present a general form of the incident light fields whose longitudinal component is zero in the focal plane. In this case, the SAM vector can only have the longitudinal non-zero component. The notion of the SAM vector elongated only along the optical axis in the focal plane is applied for solving magnetization problems.

Keywords:
spin angular momentum, orbital angular momentum, topological charge, Hall effect, spin-orbital conversion, Richards-Wolf formulas, tight focusing.

Citation:
Kotlyar VV, Kovalev AA, Stafeev SS, Kozlova ES, Telegin AM. Spin-orbital conversion of the light field immediately behind an ideal spherical lens. Computer Optics 2024; 48(3): 325-333. DOI: 10.18287/2412-6179-CO-1447.

Acknowledgements:
This work was funded by the RF Ministry of Science and Higher Education under the government project of the FSRC “Crystallography and Photonics” RAS (Sections "Introduction" and "Conclusion") and the Russian Science Foundation under project No.23-12-00236 (Sections "Theoretical background" and "Numerical modeling").

References:

  1. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992; 45(11): 8185-8189. DOI: 10.1103/PhysRevA.45.8185.
  2. Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 2011; 3(2): 161. DOI: 10.1364/AOP.3.000161.
  3. Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery MPJ, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S. Optical communications using orbital angular momentum beams. Adv Opt Photonicsm 2015; 7(1): 66-106. DOI: 10.1364/AOP.7.000066.
  4. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340(6140): 1545-1548. DOI: 10.1126/science.1237861.
  5. Ding D-S, Zhou Z-Y, Shi B-S, Zou X-B, Guo G-C. Linear up-conversion of orbital angular momentum. Opt Lett 2012; 37(15): 3270-3272. DOI: 10.1364/OL.37.003270.
  6. Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, three-dimensional entanglement for quantum communication. Phys Rev Lett 2002; 89(24): 240401. DOI: 10.1103/PhysRevLett.89.240401.
  7. Zou XB, Mathis W. Scheme for optical implementation of orbital angular momentum beam splitter of a light beam and its application in quantum information processing. Phys Rev A 2005; 71(4): 042324. DOI: 10.1103/PhysRevA.71.042324.
  8. Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C. Overcoming the Rayleigh criterion limit with optical vortices. Phys Rev Lett 2006; 97(16): 163903. DOI: 10.1103/PhysRevLett.97.163903.
  9. MacDonald MP, Paterson L, Volke-Sepulveda K, Arlt J, Sibbett W, Dholakia K. Creation and manipulation of three-dimensional optically trapped structures. Science 2002; 296(5570): 1101-1103. DOI: 10.1126/science.1069571.
  10. Padgett M, Bowman R. Tweezers with a twist. Nat Photonics 2011; 5(6): 343-348. DOI: 10.1038/nphoton.2011.81.
  11. Molina-Terriza G, Torres JP, Torner L. Twisted photons. Nat Phys 2007; 3(5): 305-310. DOI: 10.1038/nphys607.
  12. Molloy JE, Padgett MJ. Lights, action: optical tweezers. Contemp Phys 2002; 43(4): 241-258. DOI: 10.1080/0010751011011605.
  13. Beijersbergen MW, Coerwinkel RPC, Kristensen M, Woerdman JP. Helical-wavefront laser beams produced with a spiral phaseplate. Opt Commun 1994; 112(5-6): 321. DOI: 10.1016/0030-4018(94)90638-6.
  14. Karimi E, Piccirillo B, Nagali E, Marrucci L, Santamato E. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl Phys Lett 2009; 94(23): 231124. DOI: 10.1063/1.3154549.
  15. Heckenberg NR, McDuff R, Smith CP, White AG. Generation of optical phase singularities by computer-generated holograms. Opt Lett 1992; 17(3): 221-223. DOI: 10.1364/OL.17.000221.
  16. Liu X, Huang S, Xie W, Pei Z. Topological charge parallel measurement method for optical vortices based on computer-generated holography. J Opt Technol 2022; 89(2): 94-100. DOI: 10.1364/JOT.89.000094.
  17. Li R, Ren Y, Liu T, Wang C, Liu Z, Zhao J, Sun R, Wang Z. Generating large topological charge Laguerre–Gaussian beam based on 4K phase-only spatial light modulator. Chin Opt Lett 2022; 20: 120501. DOI: 10.3788/COL202220.120501.
  18. Lv S, Bai Y, Luo W, Meng F, Wang R. Design of a vortex metalens with high focusing efficiency using propagation phase. Appl Opt 2022; 61(21): 6311-6315. DOI: 10.1364/AO.464090.
  19. Shen Z, Xiang Z, Wang Z, Shen Y, Zhang B. Optical spanner for nanoparticle rotation with focused optical vortex generated through a Pancharatnam–Berry phase metalens. Appl Opt 2021; 60(16): 4820-4826. DOI: 10.1364/AO.425892.
  20. Cao G, Lin H, Jia B, Yuan X, Somekh M, Wei S. Design of a dynamic multi-topological charge graphene orbital angular momentum metalens. Opt Express 2023; 31(2): 2102-2111. DOI: 10.1364/OE.480946.
  21. Zhu J, Wenjing S, Dong Z. Directionally duplexed all-dielectric metalens for multifunctional structured light generation. Opt Lett 2023; 48(15): 4013-4016. DOI: 10.1364/OL.495014.
  22. Hao Q, Wang W, Hu Y, Zhang S, Zhang S, Zhang Y. Independent and intensity-adjustable dual-focused vortex beams via a helicity-multiplexing metalens. Opt Mater Express 2022; 12(10): 3872-3881. DOI: 10.1364/OME.465726.
  23. Nalimov AG, Kotlyar VV. Multifocal metalens for detecting several topological charges at different wavelengths. Computer Optics 2023; 47(2): 201-207. DOI: 10.18287/2412-6179-CO-1170.
  24. Guo Y, Zhang S, Luo X. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 2021; 10: 63. DOI: 10.1038/s41377-021-00497-7.
  25. Jin Z, Janoschka D, Deng J, Ge L, Dreher P, Frank B, Hu G, Ni J, Yang Y, Li J, Yu G, Lei D, Li G, Xiao S, Mei S, Giessen H, zu Heringdorf FM, Qiu C-W. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 2021; 1: 5. DOI: 10.1186/s43593-021-00005-9.
  26. Kotlyar VV, Stafeev SS, Nalimov AG, O’Faolain L, Kotlyar MV. A dual-functionality metalens to shape a circularly polarized optical vortex or a second-order cylindrical vector beam. Photonics Nanostruct 2021; 43: 100898. DOI: 10.1016/j.photonics.2021.100898.
  27. Nalimov AG, Kotlyar VV. Topological charge of optical vortices in the far field with an initial fractional charge: optical “dipoles”. Computer Optics 2022; 46(2): 189-195. DOI: 10.18287/2412-6179-CO-1073.
  28. Kotlyar VV, Kovalev AA, Telegin AM. Angular and orbital angular momenta in the tight focus of a circularly polarized optical vortex. Photonics 2023; 10(2): 160. DOI: 10.3390/photonics10020160..

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20