(48-4) 10 * << * >> * Русский * English * Содержание * Все выпуски
Verification of color characteristics of document images captured in uncontrolled conditions
I.A. Kunina 1,2, O.A. Padas 2,3, O.A. Kolomyttseva 4
1 Institute for Information Transmission Problems of RAS (Kharkevich Institute),
127051, Moscow, Russia, Bolshoy Karetny per. 19, build.1;
2 Smart Engines Service LLC, 117312, Moscow, Russia, pr. 60-letiya Oktyabrya 9;
3 Moscow Institute of Physics and Technology (State University),
141701, Dolgoprudny, Russia, Institutskiy per. 9;
4 Neapolis University Paphos, Paphos 8042, Cyprus,2 Danais Avenue
PDF, 11 MB
DOI: 10.18287/2412-6179-CO-1385
Страницы: 554-561.
Язык статьи: English.
Аннотация:
This paper examines a presentation attack when a color photo of a gray copy of a document is presented instead of the original color document during remote user identification. To detect such an attack, we propose an algorithm based on the comparison of chromaticity histograms of presented color images of the document and the ideal template of this type of document. The chromaticity histograms of the original document and the template are expected to be quite identical, while the histograms of the gray copy of the document and the template would be different. The algorithm was tested on images from the open dataset DLC-2021, which contains color images of synthesized identity documents and color images of their gray copies. The precision of the proposed method was 98.99 %, the recall was 84.7 %, that gave 8 times fewer errors than the baseline provided by authors of DLC-2021.
Ключевые слова:
document analysis, document liveness detection, presentation attack detection, gray copies detection, chromaticity.
Citation:
Kunina IA, Padas OA, Kolomyttseva OA. Verification of color characteristics of document images captured in uncontrolled conditions. Computer Optics 2024; 48(4): 554-561. DOI: 10.18287/2412-6179-CO-1385.
References:
- Matalov DP, Usilin SA, Arlazarov VV. Modification of the Viola-Jones approach for the detection of the government seal stamp of the Russian Federation. Proc SPIE 2019; 11041: 110411Y.
- Kada O, Kurtz C, van Kieu C, Vincent N. Hologram detection for identity document authentication. In Book: Yacoubi ME, Granger E, Yuen PC, Pal U, Vincent N, eds. Pattern recognition and artificial intelligence: Third international conference, ICPRAI 2022, Paris, France, June 1-3, 2022, Proceedings, Part I. Cham: Springer International Publishing; 2022: 346-357.
- Chernyshova YS, Aliev MA, Gushchanskaia ES, Sheshkus AV. Optical font recognition in smartphone-captured images and its applicability for ID forgery detection. Proc SPIE 2019; 11041: 110411J.
- Apgar D, Abid MR. Survey of face liveness detection for unsupervised locations. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) 2021: 0162-0168.
- Yan J, Chen C. Cross-domain recaptured document detection with texture and reflectance characteristics. 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 2021: 1708-1715.
- Chen C, Zhao L, Yan J, Li H. A distortion model-based pre-screening method for document image tampering localization under recapturing attack. Signal Process 2022; 200: 108666.
- Mudgalgundurao R, Schuch P, Raja K, Ramachandra R, Damer N. Pixel-wise supervision for presentation attack detection on identity document cards. IET Biometrics 2022; 11(5): 383-395.
- Hartl A, Arth C, Schmalstieg D. AR-based hologram detection on security documents using a mobile phone. In Book: Bebis G, Boyle R, Parvin B, Koracin D, McMahan R, Jerald J, Zhang H, Drucker SM, Kambhamettu C, Choubassi M, Deng Z, Carlson M, eds. Advances in visual computing. Part II. Cham: Springer International Publishing Switzerland; 2014: 335-346.
Ngoc MÔV, Fabrizio J, Géraud T. Saliency-based detection of identy documents captured by smartphones. 2018 13th IAPR Int Workshop on Document Analysis Systems (DAS) 2018: 387-392.
- de Sá Soares A, das Neves Junior RB, Bezerra BLD. BID Dataset: a challenge dataset for document processing tasks. 2020 Anais Estendidos do XXXIII Conference on Graphics, Patterns and Images 2020: 143-146.
- Bulatov KB, Emelyanova EV, Tropin DV, Skoryukina NS, Chernyshova YS, Sheshkus AV, Usilin SA, Ming Z, Burie J, Luqman M, Arlazarov VV. MIDV-2020: A comprehensive benchmark dataset for identity document analysis. Computer Optics 2022; 46(2): 252-270. DOI: 10.18287/2412-6179-CO-1006.
- Polevoy DV, Sigareva IV, Ershova DM, Arlazarov VV, Nikolaev DP, Zuheng M, Muhammad ML, Burie J. Document Liveness Challenge dataset (DLC-2021). J Imaging 2022; 8(7): 181. DOI: 10.3390/jimaging8070181.
- Van Herk M. A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels. Pattern Recogn Lett 1992; 13(7): 517-521.
- Gil J, Werman M. Computing 2-D min, median, and max filters. IEEE Trans Pattern Anal Mach Intell 1993; 15(5): 504-507.
- Smith AR. Color gamut transform pairs. ACM Siggraph Comput Graph 1978; 12(3): 12-19.
- Finlayson GD, Schiele B, Crowley JL. Comprehensive colour image normalization. In Book:
- Burkhardt H, Neumann B, eds. Computer vision – ECCV’98. Part I. Berlin, Heidelberg: Springer; 1998: 475-490.
© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20