(48-5) 13 * << * >> * Русский * English * Содержание * Все выпуски
  
Convolutional neural network-based low light image enhancement method
 J. Guo 1
 1 Department of Information Engineering,
     Xiamen Ocean Vocational College, Xiamen, 361012, China
 
 PDF, 1967 kB
  PDF, 1967 kB
DOI: 10.18287/2412-6179-CO-1415
Страницы: 745-752.
Язык статьи: English.
 
Аннотация:
Low-light  image augmentation has become increasingly important with the advancement of  computer vision technologies in a variety of application settings. However,  noise and contrast reduction frequently have an impact on image quality in  low-light situations. In this paper, a convolutional neural network-based  technique for low-light picture augmentation is put forth. The stability of  local binary features under variations in illumination is the study’s initial  method of providing directional advice for the enhancement algorithm. Second,  the addition of a channel attentiveness mechanism improves the network’s  capacity to acquire low-light image features. The proposed model of the study  performed better on average in the two dataset tests when compared to the  contrast-constrained adaptive histogram equalization algorithm and the  bilateral filtering algorithm. Additionally, the recall and DICE coefficient  performed better in the tests as well, improving by 16.24 % and  4.98 %, respectively. The proposed method outperformed all others in the picture enhancement studies,  according to the experimental findings, proving the validity of this study. The  purpose of the study is to offer a reference framework for low-light image  enhancing techniques.
Ключевые слова:
computer vision, image  enhancement, image quality, convolutional neural networks.
Citation:
Guo J. Convolutional neural network-based low light image enhancement method. Computer Optics 2024; 48(5): 745-752. DIO: 10.18287/2412-6179-CO-1415.
References:
  - Gao K, Akbarpour HA, Fraser J, Nouduri K, Bunyak F,  Massaro R, Seetharaman G, Palaniappan K. Local feature performance evaluation  for structure-from-motion and multi-view stereo using simulated city-scale  aerial imagery. IEEE Sens J 2020; 21(10): 11615-11627. DOI:  10.1109/JSEN.2020.3042810.
 
- Fan X, Lei J, Liang J, Fang Y, Cao X, Ling N.  Unsupervised stereoscopic image retargeting via view synthesis and stereo cycle  consistency losses. Neurocomputing 2021; 447(11): 161-171. DOI:  10.1016/j.neucom.2021.02.079.
 
- Zhang  S, Li H, Kong W. Object counting method based on dual attention network. IET  Image Process 2020; 14(8): 1621-1627. DOI: 10.1049/iet-ipr.2019.0465.
 
- Lévy  B, Mohayaee R, Hausegger SV. A fast semi-discrete optimal transport algorithm  for a unique reconstruction of the early Universe. Mon Not R Astron Soc 2021;  501(1): 1165-1185. DOI: 10.1093/mnras/stab1676.
 
- Belizario  IV, Linares OC, Neto J. Automatic image segmentation based on label  propagation. IET Image Process 2021; 15(15): 2532-2547. DOI:  10.1049/ipr2.12242.
 
- Sandoub  G, Atta R, Ali HA, Abdel-Kader RF. A low-light image enhancement method based  on bright channel prior and maximum colour channel. IET Image Process 2021;  15(8): 1759-1772. DOI: 10.1049/ipr2.12148.
 
- Yang  J, Xu Y, Yue H, Jiang Z, Li K. LLIE based on Retinex decomposition and adaptive  gamma correction. IET Image Process 2021; 15(5): 1189-1202. DOI:  10.1049/ipr2.12097.
 
- Yang  H-H, Huang K-C, Chen W-T. LAFFNet: A lightweight adaptive feature fusion  network for underwater image enhancement. IEEE International Conference on  Robotics and Automation 2021; Corpus ID: 233715102.  DOI:10.1109/ICRA48506.2021.9561263
 
- He  K, Tao D, Xu D. Adaptive colour restoration and detail retention for image  enhancement. IET Image Process 2021; 15(14): 3685-3697. DOI: 10.1049/ipr2.12223
 
- Azam  MA, Khan KB, Ahmad M, Mazzara M, Khattak D, Multimodal K. Medical image  registration and fusion for quality enhancement. Comput Mater Contin 2021;  68(1): 821-840. DOI: 10.32604/cmc.2021.016131.
 
- Lore  KG, Akintayo A, Sarkar S. LLNet: A deep autoencoder approach to natural  low-light image enhancement. Pattern Recogn 2017; 61: 650-662. DOI:  10.1016/j.patcog.2016.06.008.
 
- Wang  R, Zhang Q, Fu C W, Shen X, Zheng W S, Jia J. Underexposed photo enhancement  using deep illumination estimation. Proc IEEE/CVF Conf on Computer Vision and  Pattern Recognition 2019: 6849-6857. DOI: 10.1109/CVPR.2019.00701.
 
- Li Y,  Hu J, Ni G, Zeng T. Deep CNN denoiser prior for blurred images restoration with  multiplicative noise. Inverse Probl Imag 2023; 17(3): 726-745. DOI:  10.3934/ipi.2022075.
 
- Wu X,  Li P, Zhou J, Liu Y. A cascaded CNN-based method for monocular vision robotic  grasping. Industrial Robot 2022; 49(4): 645-657.
 
- Shalash  WM. A deep learning CNN model for driver fatigue detection using single EEG  channel. J Theor Appl Inf Technol 2021; 99(2): 462-477.
 
- Zeng  Z, Sun S, Sun J, Yin J, Shen Y. Constructing a mobile visual search framework  for Dunhuang murals based on fine-tuned CNN and ontology semantic distance.  Electron Libr 2022; 40(3): 121-139. DOI: 10.1108/EL-09-2021-0173.
 
- Wu J,  Zhang Y, Luo C, Yan L, Shen X. A modification-free steganography algorithm  based on image classification and CNN. Int J Digi Crime Forens 2021; 13(3):  47-58. DOI: 10.4018/IJDCF.20210501.oa4.
 
- Yang  Y, Song X. Research on face intelligent perception technology integrating deep  learning under different illumination intensities. Journal of Computational and  Cognitive Engineering 2022, 1(1): 32-36. DOI: 10.47852/bonviewJCCE19919.
 
- Nsugbe  E. Toward a self-supervised architecture for semen quality prediction using  environmental and lifestyle factors. Artif Intell Appl 2023; 1(1): 35-42. DOI:  10.47852/bonviewAIA2202303..
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20