(48-5) 14 * << * >> * Русский * English * Содержание * Все выпуски

Deep-learning feature extraction with their subsequent selection and support vector machine classification of the breast ultrasound images
А.А. Kolchev 1, D.V. Pasynkov 2,3, I.A. Egoshin 2, I.V. Kliouchkin 4, О.О. Pasynkova 2

Kazan (Volga region) Federal University, Ministry of Education and Science of Russian Federation,
420008, Kazan, Russia, Kremlevskaya St. 18;
Mari State University, Ministry of Education and Science of Russian Federation,
424000, Yoshkar-Ola, Russia, Lenin square 1;
Kazan State Medical Academy - Branch Campus of the Federal State Budgetary Educational Institution
of Further Professional Education «Russian Medical Academy of Continuous Professional Education»,
Ministry of Healthcare of the Russian Federation, 420012, Kazan, Russia, Butlerova St 36;
Kazan Medical University, Ministry of Health of Russian Federation,
420012, Kazan, Russia, Butlerova St. 49

  PDF, 1641 kB

DOI: 10.18287/2412-6179-CO-1421

Страницы: 753-761.

Язык статьи: English.

Аннотация:
Our study aimed to develop a comprehensive system for discriminating between benign and malignant breast lesions on ultrasound images. The system integrated deep learning (DL) and conventional machine learning techniques. Our database consisted of 494 ultrasound images, comprising 231 benign and 263 malignant breast lesions. In the initial stage, we evaluated the performance of non-modified DL networks, including VGG-16, ResNet-18, and InceptionRes-NetV2. We assessed the results for the entire lesion as well as its inner and outer parts. For training the networks, we employed supervised transfer learning. In the second stage, we utilized a support vector machine (SVM) model for lesion classification. The features obtained from the modified DL networks, where we removed the last layers, were used for training and testing the SVM. In the final stage, we assessed the classification results using SVM, with a focus on selecting the most significant features obtained from the modified DL networks. We employed techniques such as ReliefF, FSCNCA, and LASSO for feature selection. Our three-step approach yielded impressive results, with an accuracy of 0.987, sensitivity of 0.989, and specificity of 0.983. These results significantly outperformed using only DL or DL+SVM without feature selection. Overall, our algorithm demonstrated sufficient accuracy in the clinical task of discriminating between benign and malignant breast lesions on ultrasound images.

Ключевые слова:
ultrasound image, lesion, deep learning, SVM, feature extraction.

Благодарности
The main results of sections "Materials and methods" and "Results" were obtained by D.V. Pasynkov and I.A. Egoshin with the support by Grant of Russian Science Foundation (Project 22-71-10070, https://rscf.ru/en/project/22-71-10070/). The authors are grateful to the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030) for the technical feasibility of using hardware and software.

Citation:
Kolchev AA, Pasynkov DV, Egoshin IA, Kliouchkin IV, Pasynkova OO. Deep-learning feature extraction with their subsequent selection and support vector machine classification of the breast ultrasound images. Computer Optics 2024; 48(5): 753-761. DOI: 10.18287/2412-6179-CO-1421.

References:

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 2018; 68: 394-424. DOI: 10.3322/caac.21492.
  2. Seely JM, Alhassan T. Screening for breast cancer in 2018 – what should we be doing today? Curr Oncol 2018; 25(1): S115-S124. DOI: /10.3747/co.25.3770.
  3. Lauby-Secretan B, Scoccianti C, Loomis D, Benbrahim-Tallaa L, Bouvard V, Bianchini F, Straif K. Breast-cancer screening – viewpoint of the IARC Working Group. N Engl J Med 2015; 372(24): 2353-2358. DOI: 10.1056/NEJMsr1504363.
  4. Thigpen D, Kappler A, Brem R. The role of ultrasound in screening dense breasts – a review of the literature and practical solutions for implementation. Diagnostics (Basel) 2018; 8(1): 1-20. DOI: 10.3390/diagnostics8010020.
  5. Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Bohm-Velez M, Pisano ED, Jong RA, Evans WP, Morton MJ, Mahoney MC, Larsen LH, Barr RG, Farria DM, Marques HS, Boparai K. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA 2008; 299(18): 2151-2163. DOI: 10.1001/jama.299.18.2151.
  6. Corsetti V, Houssami N, Ferrari A, Ghirardi M, Bellarosa S, Angelini O, Bani C, Sardo P, Remida G, Galligioni E, Ciatto S. Breast screening with ultrasound in women with mammography-negative dense breasts: evidence on incremental cancer detection and false positives, and associated cost. Eur J Cancer 2008; 44(4): 539-544. DOI: 10.1016/j.ejca.2008.01.009.
  7. Egoshin IA, Pasynkov DV, Kolchev AA, Kliouchkin IV, Pasynkova OO. Segmentation of breast focal lesions on the ultrasound image. Biomed Eng 2020; 54: 99-103. DOI: 10.1007/s10527-020-09982-6.
  8. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. 2009 IEEE Conf on Computer Vision and Pattern Recognition 2009: 248-255. DOI: 10.1109/CVPR.2009.5206848.
  9. Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learn 2003; 53: 23-69. DOI: 10.1023/A:1025667309714.
  10. Yang W, Wang K, Zuo W. Neighborhood component feature selection for high-dimensional data. J Comput 2012; 7(1): 161-168. DOI: 10.4304/jcp.7.1.161-168.
  11. Muthukrishnan R, Rohini R. LASSO: A feature selection technique in predictive modeling for machine learning. 2016 IEEE Int Conf on Advances in Computer Applications (ICACA) 2016: 18-20. DOI: 10.1109/ICACA.2016.7887916.
  12. Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Duan Y. Deep learning models for classification of red blood cells in microscopy images to aid in sickle cell anemia diagnosis. Electronics 2020; 9: 427. DOI: 10.3390/electronics9030427.
  13. Zahoor MM, Qureshi SA, Bibi S, Khan SH, Khan A, Ghafoor U, Bhutta MR. A new deep hybrid boosted and ensemble learning-based brain tumor analysis using MRI. Sensors (Basel) 2022; 22(7): 2726. DOI: 10.3390/s22072726.
  14. Tan S, Pan J, Zhang J, Liu Y. CASVM: An efficient deep learning image classification method combined with SVM. Appl Sci 2022; 12(22): 11690. DOI: 10.3390/app122211690.
  15. Virmani J, Agarwal R. Deep feature extraction and classification of breast ultrasound images. Multimed Tools Appl 2020; 79(37): 27257-27292. DOI: 10.1007/s11042-020-09337-z.
  16. Drukker K, Giger ML, Vyborny CJ, Mendelson EB. Computerized detection and classification of cancer on breast ultrasound. Acad Radiol 2004; 11(5): 526-535. DOI: 10.1016/S1076-6332(03)00723-2.
  17. Shakya A, Biswas M, Pal M. CNN-based fusion and classification of SAR and optical data. Int J Remote Sens 2020; 41(22): 8839-8861. DOI: 10.1080/01431161.2020.1783713.
  18. Tan C, Sun Y, Li G, Jiang G, Chen D, Liu H. Research on gesture recognition of smart data fusion features in the IoT. Neural Comput Appl 2019; 32(22): 16917-16929. DOI: 10.1007/s00521-019-04023-0.
  19. Dong H, Song K, He Y, Xu J, Yan Y, Meng Q. PGA-Net: Pyramid feature fusion and global context attention network for automated surface defect detection. IEEE Trans Ind Inform 2019; 16(12): 7448-7458. DOI: 10.1109/TII.2019.2958826.
  20. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proc 32nd Int Conf on Machine Learning 2015; 37: 448-456.
  21. Klimonda Z, Karwat P, Dobruch-Sobczak K, Piotrzkowska-Wroblewska H, Litniewski J. Breast-lesions characterization using Quantitative Ultrasound features of peritumoral tissue. Sci Rep 2019; 9: 7963. DOI: 10.1038/s41598-019-44376-z.
  22. Bahareh B, Hamze R, Tehrani Ali KZ, Hassan R. Deep classification of breast cancer in ultrasound images: more classes, better results with multi-task learning. Proc SPIE 2021; 11602: 116020S. DOI: 10.1117/12.2581930.
  23. Nemat H, Fehri H, Ahmadinejad N, Frangi AF, Gooya A. Classification of breast lesions in ultrasonography using sparse logistic regression and morphology-based texture features. Med Phys 2018; 45(9): 4112-4124. DOI: 10.1002/mp.13082.
  24. Jabeen K, Khan MA, Alhaisoni M, Tariq U, Zhang Y-D, Hamza A, Mickus A, Damasevicius R. Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion. Sensors 2022; 22(3): 807. DOI: 10.3390/s22030807.
  25. Badawy SM, Mohamed AE-NA, Hefnawy AA, Zidan HE, GadAllah MT, El-Banby GM. Automatic semantic seg-mentation of breast tumors in ultrasound images based on combining fuzzy logic and deep learning – A feasibility study. PLoS ONE 2021; 16(5): e0251899. DOI: 10.1371/journal.pone.0251899.
  26. Zhuang Z, Yang Z, Joseph Raj AN, Wei C, Jin P, Zhuang S. Breast ultrasound tumor image classification using image decomposition and fusion based on adaptive multi-model spatial feature fusion. Comput Methods Programs Biomed 2021; 208: 106221. DOI: 10.1016/j.cmpb.2021.106221.
  27. Zhou Z, Wu S, Chang KJ, Chen WR, Chen YS, Kuo WH, Lin CC, Tsui PH. Classification of benign and malignant breast tumors in ultrasound images with posterior acoustic shadowing using half-contour features. J Med Biol Eng 2015; 35(2): 178-187. DOI: 10.1007/s40846-015-0031-x.
  28. Yassin NI, Omran S, El Houby EM, Allam H. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review. Comput Methods Programs Biomed 2018; 156: 25-45. DOI: 10.1016/j.cmpb.2017.12.012.-13.
  29. Naji MA, Filali SE, Aarika K, Benlahmar EH, Abdelouhahid RA, Debauche O. Machine learning algorithms for breast cancer prediction and diagnosis. Procedia Comput Sci 2021; 191: 487-492. DOI: 10.1016/j.procs.2021.07.062.
  30. Kim S, Kavuri S, Lee M. Deep network with support vector machines. In: Lee M, Hirose A, Hou ZG, Kil RM, eds. Neural information processing. Berlin, Heidelberg: Springer-Verlag; 2013: 458–465. DOI: 10.1007/978-3-642-42054-2_57.
  31. Jafarpisheh N, Teshnehlab M. Cancers classification based on deep neural networks and emotional learning approach. IET Syst Biol 2018; 12: 258-263. DOI: 10.1049/iet-syb.2018.5002.
  32. Vogado LH, Veras RM, Araujo FH, Silva RR, Aires KR. Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification. Eng Appl Artif Intell 2018; 72: 415-422. DOI: 10.1016/j.engappai.2018.04.024.
  33. Nanni L, Ghidoni S, Brahnam S. Deep features for training support vector machines. J Imaging 2021; 7(9): 117. DOI: 10.3390/jimaging7090177.
  34. Khan MA, Javed MY, Sharif M, Saba T, Rehman A. Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification. 2019 Int Conf on Computer and Information Sciences (ICCIS) 2019: 1-7. DOI: 10.1109/ICCISci.2019.8716400.
  35. Al-masni M, Al-antari MA, Park J-M, Gi G, Kim T-Y, Rivera P, Valarezo AE, Choi M-T, Han S-M, Kim T-S. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput Methods Programs Biomed 2018; 157: 85-94. DOI: 10.1016/j.cmpb.2018.01.017.
  36. Jiang F, Liu H, Yu S, Xie Y. Breast mass lesion classification in mammograms by transfer learning. Proc 5th Int Conf on Bioinformatics and Computational Biology (ICBCB) 2017: 59-62. DOI: 10.1145/3035012.3035022.
  37. Liu W, Liu P, Wu X, Du Y. Breast tumor ultrasound image classification method based on the fusion of deep network features and texture morphological features. Int Conf on Public Health and Data Science (ICPHDS) 2021: 81-85. DOI: 10.1109/ICPHDS53608.2021.00025.
  38. Kolchev AA, Pasynkov DV, Egoshin IA, Kliouchkin IV, Pasynkova OO. Cystic (including atypical) and solid breast lesion classification using the different features of quantitative ultrasound parametric images. Int J CARS 2022; 17: 219-228. DOI: 10.1007/s11548-021-02522-x.
  39. Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data in Brief 2020; 28: 104863. DOI: 10.1016/j.dib.2019.104863..

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20