(49-5) 05 * << * >> * Русский * English * Содержание * Все выпуски

Многопорядковые комбинированные дифракционные оптические элементы для идентификации волновых аберраций различной величины
П.А. Хорин 1, А.П. Дзюба 1, С.Н. Хонина 1,2

Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34;
Институт систем обработки изображений, НИЦ «Курчатовский институт»,
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151

  PDF, 2271 kB

DOI: 10.18287/2412-6179-CO-1692

Страницы: 741-748.

Аннотация:
В данной работе предложены и разработаны гибридные многопорядковые дифракционные оптические элементы, согласованные с набором волновых аберраций и полиномов Цернике. Наличие в одном дифракционном оптическом элементе сочетания двух разных типов согласованных функций позволяет использовать его для идентификации волновых аберраций различной величины в диапазоне от 0,05λ до 0,5λ. На основе численного моделирования показано, что многопорядковые дифракционные оптические элементы позволяют в одной плоскости формировать набор аберрационно-преобразованных картин. Введены критерии для идентификации сверхмалых аберраций (до 0,1λ) и аберраций большей величины (до 0,5λ). Разработан алгоритм автоматизированного выделения на картинах фокальной интенсивности областей целевого интереса. Проведён расчёт 49-канального оптического элемента, согласованного с волновыми аберрациями до 4-го порядка (в терминах функций Цернике) и функциями Цернике. На тестовых аберрированных волновых фронтах показана возможность использования предложенных оптических элементов для отличия аберраций разного диапазона, а также для определения их типа и веса.

Ключевые слова:
волновые аберрации, функции Цернике, многопорядковые ДОЭ, величина аберрации.

Благодарности
Исследование выполнено за счет гранта Российского научного фонда № 24-79-10101, https://rscf.ru/project/24-79-10101/ (в части численного моделирования), а также в рамках Государственного задания НИЦ «Курчатовский институт» (в теоретической части).

Цитирование:
Хорин, П.А. Многопорядковые комбинированные дифракционные оптические элементы для идентификации волновых аберраций различной величины / П.А. Хорин, А.П. Дзюба, С.Н. Хонина // Компьютерная оптика. – 2025. – Т. 49, № 5. – С. 741-748. – DOI: 10.18287/2412-6179-CO-1692.

Citation:
Khorin PA, Dzyuba AP, Khonina SN. Multi-order combined diffractive optical elements for identification of different-magnitude wave aberrations. Computer Optics 2025; 49(5): 741-748. DOI: 10.18287/2412-6179-CO-1692.

References:

  1. Rodríguez AC, Booth MJ, Turcotte R. Editorial: Adaptive optics for in vivo brain imaging. Front Neurosci 2023; 17: 1188614. DOI: 10.3389/fnins.2023.1188614.
  2. Roddier F. Adaptive optics in astronomy. Cambridge: Cambridge University Press; 1999.
  3. Lukin VP. Adaptive optics in the formation of optical beams and images. Phys-Usp 2014; 57(6): 556. DOI: 10.3367/UFNe.0184.201406b.0599.
  4. Klebanov IM, Karsakov AV, Khonina SN, Davydov AN, Polyakov KA. Wavefront aberration compensation of space telescopes with telescope temperature field adjustment. Computer Optics 2017; 41(1): 30-36. DOI: 10.18287/0134-2452-2017-41-1-30-36.
  5. Rastorguev AA, Kharitonov SI, Kazanskiy NL. Modeling of arrangement tolerances for the optical elements in a space-borne Offner imaging hyperspectrometer. Computer Optics 2018; 42(3): 424-431. DOI: 10.18287/2412-6179-2018-42-3-424-431.
  6. Chen Z, Leng R, Yan C, Fang C, Wang Z. Analysis of telescope wavefront aberration and optical path stability in space gravitational wave detection. Appl Sci 2022; 12(24): 12697. DOI: 10.3390/app122412697.
  7. Yudaev AV, Shashkova IA, Kiselev AV, Komarova AA, Tavrov AV. Wavefront correction for the observation of an exoplanet against the background of the diffraction stellar vicinity. J Exp Theor Phys 2023; 136: 109-130. DOI: 10.1134/S1063776123020127.
  8. Booth MJ. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci Appl 2014; 3: e165. DOI: 10.1038/lsa.2014.46.
  9. Ji N. Adaptive optical fluorescence microscopy. Nat Methods 2017; 14(4): 374-380. DOI: 10.1038/nmeth.4218.
  10. Thomas S. A simple turbulence simulator for adaptive optics. Proc SPIE 2004; 5490: 766-773. DOI: 10.1117/12.549858.
  11. Nevzorov AA, Stankevich DA. A method of wavefront distortion correction for an atmospheric optical link with a small volume of information transmitted through a service channel. Computer Optics 2020; 44(5): 848-851. DOI: 10.18287/2412-6179-CO-733.
  12. Du M, Loetgering L, Eikema KSE, Witte S. Measuring laser beam quality, wavefronts, and lens aberrations using ptychography. Opt Express 2020; 28(4): 5022-5034. DOI: 10.1364/OE.385191.
  13. Artal P, Guirao A, Berrio E, Williams DR. Compensation of corneal aberrations by the internal optics in the human eye. J Vision 2001; 1: 1-8. DOI: 10.1167/1.1.1.
  14. Prieto PM, Fernandez EJ, Manzanera S, Artal P. Adaptive optics with a programmable phase modulator: applications in the human eye. Opt Express 2004; 12(17): 4059-4071. DOI: 10.1364/OPEX.12.004059.
  15. Khorin PA, Khonina SN, Karsakov AV, Branchevskiy SL. Analysis of corneal aberration of the human eye. Computer Optics 2016; 40(6): 810-817. DOI: 10.18287/0134-2452-2016-40-6-810-817.
  16. Martins AC, Vohnsen B. Measuring ocular aberrations sequentially using a digital micromirror device. Micromachines 2019; 10(2): 117. 10.3390/mi10020117.
  17. Baum OI, Omel'chenko AI, Kasianenko EM, Skidanov RV, Kazanskiy NL, Sobol EN, Bolshunov AV, Avetisov SE, Panchenko VYa. Control of laser-beam spatial distribution for correcting the shape and refraction of eye cornea. Quantum Electron 2020; 50(1): 87-93. DOI: 10.1070/QEL17216.
  18. Khorin PA, Khonina SN. Simulation of the human myopic eye cornea compensation based on the analysis of aberrrometric data. Vision 2023; 7(1): 21. DOI: 10.3390/vision7010021.
  19. Khonina SN, Ustinov AV, Pelevina EA. Analysis of wave aberration influence on reducing focal spot size in a high-aperture focusing system. J Opt 2011; 13(9): 095702. DOI: 10.1088/2040-8978/13/9/095702.
  20. Abramenko AA. Extrinsic calibration of stereo camera and three-dimensional laser scanner. Computer Optics 2019; 43(2): 220-230. DOI: 10.18287/2412-6179-2019-43-2-220-230.
  21. Hampson KM, Turcotte R, Miller DT, Kurokawa K, Males JR, Ji N, Booth MJ. Adaptive optics for high-resolution imaging. Nat Rev Methods Primers 2021; 1: 68. DOI: 10.1038/s43586-021-00066-7.
  22. Campbell H, Greenaway A. Wavefront sensing: From historical roots to the state-of-the-art. EAS Publ Ser 2006; 22: 165-185. DOI: 10.1051/eas:2006131.
  23. Ling T, Jiang J, Zhang R, Yang Y. Quadriwave lateral shearing interferometric microscopy with wideband sensitivity enhancement for quantitative phase imaging in real time. Sci Rep 2017; 7: 9. DOI: 10.1038/s41598-017-00053-7.
  24. Yang W, Wang J, Wang B. A method used to improve the dynamic range of Shack–Hartmann wavefront sensor in presence of large aberration. Sensors 2022; 22(19): 7120. DOI: 10.3390/s22197120.
  25. Mahajan VN. Zernike circle polynomials and optical aberration of system with circular pupils. Appl Opt 1994; 33(34): 8121-8124. DOI: 10.1364/AO.33.008121.
  26. Love GD. Wavefront correction and production of Zernike modes with a liquid crystal spatial light modulator. Appl Opt 1997; 36(7): 1517-1525. DOI: 10.1364/ao.36.001517.
  27. Khonina SN, Kotlyar VV, Soifer VA, Wang Y, Zhao D. Decomposition of a coherent light field using a phase Zernike filter. Proc SPIE 1998; 3573: 550-553. DOI: 10.1117/12.324588.
  28. Booth MJ. Direct measurement of Zernike aberration modes with a modal wavefront sensor. Proc SPIE 2003; 5162: 79-90. DOI: 10.1117/12.503695.
  29. Sheppard CJR. Zernike expansion of pupil filters: optimization of the signal concentration factor. J Opt Soc Am A 2015; 32(5): 928-933. DOI: 10.1364/JOSAA.32.000928.
  30. Porfirev AP, Khonina SN. Experimental investigation of multi-order diffractive optical elements matched with two types of Zernike functions. Proc SPIE 2016; 9807: 98070E. DOI: 10.1117/12.2231378.
  31. Khonina SN, Karpeev SV, Porfirev AP. Wavefront aberration sensor based on a multichannel diffractive optical element. Sensors 2020; 20(14): 3850. DOI: 10.3390/s20143850.
  32. Degtyarev SA, Porfirev AP, Khonina SN. Zernike basis-matched multi-order diffractive optical elements for wavefront weak aberrations analysis. Proc SPIE 2017; 10337: 103370Q. DOI: 10.1117/12.2269218.
  33. Khorin PA, Volotovskiy SG. Analysis of the threshold sensitivity of a wavefront aberration sensor based on a multi-channel diffraction optical element. Proc SPIE 2020; 11793: 117930B. DOI: 10.1117/12.2588188.
  34. Khorin PA, Porfirev AP, Khonina SN. Adaptive detection of wave aberrations based on the multichannel filter. Photonics 2022; 9(3): 204. DOI: 10.3390/photonics9030204.
  35. Khorin PA, Volotovskiy SG, Khonina SN. Optical detection of values of separate aberrations using a multi-channel filter matched with phase Zernike functions. Computer Optics 2021; 45(4): 525-533. DOI: 10.18287/2412-6179-CO-906.
  36. Wang JY, Silva DE. Wave-front interpretation with Zernike polynomials. Appl Opt 1980; 19(9): 1510-1518. DOI: 10.1364/AO.19.001510.
  37. Mahajan VN. Zernike circle polynomials and optical aberration of system with circular pupils. Appl Opt 1994; 33(34): 8121-8124. DOI: 1364/AO.33.008121.
  38. Lakshminarayanan V, Fleck AZ. Zernike polynomials: a guide. J Mod Opt 2011; 58(7): 545-561. DOI: 10.1080/09500340.2011.554896.
  39. Skidanov RV, Moiseev OY, Ganchevskaya SV. Additive process for fabrication of phased optical diffraction elements. J Opt Technol 2016; 83(1): 23-25. DOI: 10.1364/JOT.83.000023.
  40. Khonina SN, Kazanskiy NL, Butt MA. Grayscale lithography and a brief introduction to other widely used lithographic methods: A state-of-the-art review. Micromachines 2024; 15(11): 1321. DOI: 10.3390/mi15111321
  41. Suchkov N, Fernández EJ, Martínez-Fuentes JL, Moreno I, Artal P. Simultaneous aberration and aperture control using a single spatial light modulator. Opt Express 2019; 27(9): 12399-12413. DOI: 10.1364/OE.27.012399.
  42. Khonina SN, Karpeev SV, Butt MA. Spatial-light-modulator-based multichannel data transmission by vortex beams of various orders. Sensors 2021; 21(9): 2988. DOI: 10.3390/s21092988.
  43. Kotlyar VV, Khonina SN, Melekhin AS, Soifer VA. Encoding diffractive optical elements using local phase jumps. Computer Optics 1999; 19: 54-64.
  44. Khonina SN, Kotlyar VV, Soifer VA. Techniques for encoding composite diffractive optical elements. Proc SPIE 2003; 5036: 493-498. DOI: 10.1117/12.498521.
  45. Volotovskiy SG, Khorin PA, Dzyuba AP, Khonina SN. Adaptive compensation of wavefront aberrations using the method of moments. Opt Mem Neural Netw 2024; 33(S2): S359-S375. DOI: 10.3103/s1060992x24700644.
  46. Volotovskiy SG, Khorin PA. Application of an optimization algorithm for recognizing wavefront aberrations from the PSF picture. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) 2020: 1-4. DOI: 10.1109/FarEastCon50210.2020.9271529.
  47. Khorin PA. Iterative algorithm for wavefront correction based on optical decomposition in wave aberrations. 2021 International Conference on Information Technology and Nanotechnology (ITNT) 2021: 1-6. DOI: 10.1109/ITNT52450.2021.9649209.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20