(49-5) 06 * << * >> * Русский * English * Содержание * Все выпуски
Solving of the inverse diffraction problem in the first Rytov approximation for retrieving the phase object dielectric permittivity
E.V. Parkevich 1, A.I. Khirianova 1, T.F. Khirianov 1
1 P.N. Lebedev Physical Institute of the Russian Academy of Sciences,
53 Leninskiy Prospekt, Moscow, 119991, Russia
PDF, 1726 kB
DOI: 10.18287/2412-6179-CO-1617
Страницы: 749-757.
Язык статьи: English.
Аннотация:
In the study we derive a solution of the inverse diffraction problem aimed at retrieving the dielectric permittivity of a phase object by using the changes in the intensity and phase shift of coherent laser radiation probing the object. The theoretical considerations involve the results of solving the scalar Helmholtz wave equation in the first Rytov approximation. For an axisymmetric phase object probed with a plane wave, both with and without radiation absorption, computationally efficient equations are obtained, which reveal the relationship between the object dielectric permittivity and the Fourier spectra of the diffracted wave characteristics described in terms of the wave intensity and phase shift in free space. The equations provide reliable data when solving the inverse diffraction problem, since they take into account diffraction effects accompanying the wave passage through the object and enhancing in free space. Fundamental properties of the equations obtained are discussed together with their broad applications. The findings can open new perspectives in the diagnostics of various objects in different wavelength ranges.
Ключевые слова:
plane wave diffraction, first Rytov approximation, phase object, intensity, phase shift, direct diffraction problem.
Благодарности
The study was supported by the Russian Science Foundation (Grant No. 24-79-10167).
Citation:
Parkevich EV, Khirianova AI, Khirianov TF. Solving of the inverse diffraction problem in the first Rytov approximation for retrieving the phase object dielectric permittivity. Computer Optics 2025; 49(5): 749-757. DOI: 10.18287/2412-6179-CO-1617.
References:
- Mao SS, Mao X, Greif R, Russo RE. Initiation of an early stage plasma during picosecond laser ablation of solids. Appl Phys Lett 2000; 77(16): 2464-2466. DOI: 10.1063/1.1318239.
- Gopal A, Minardi S, Tatarakis M. Quantitative two-dimensional shadowgraphic method for high-sensitivity density measurement of under-critical laser plasmas. Opt Lett 2007; 32(10): 1238. DOI: 10.1364/OL.32.001238.
- Mao SS, Mao X, Greif R, Russo RE. Influence of preformed shock wave on the development of picosecond laser ablation plasma. J Appl Phys 2001; 89(7): 4096-4098. DOI: 10.1063/1.1351870.
- Gregorčič, Možina J. High-speed two-frame shadowgraphy for velocity measurements of laser-induced plasma and shock-wave evolution. Opt Lett 2011; 36(14): 2782-2784. DOI: 10.1364/OL.36.002782.
- Raclavský M, Rao KH, Chaulagain U, Lamač M, Nejdl J. High-sensitivity optical tomography of instabilities in supersonic gas flow. Opt Lett 2024; 49(8): 2253-2256. DOI: 10.1364/OL.510289.
- Khalid S, Kappus B, Weninger K, Putterman S. Opacity and transport measurements reveal that dilute plasma models of sonoluminescence are not valid. Phys Rev Lett 2012; 108(10): 104302. DOI: 10.1103/PhysRevLett.108.104302.
- Ahmad A, Dubey V, Singh G, Singh V, Mehta DS. Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source. Opt Lett 2016; 41(7): 1554-1557. DOI: 10.1364/OL.41.001554.
- Fan S, Smith-Dryden S, Zhao J, Gausmann S, Schülzgen A, Li G. Optical fiber refractive index profiling by iterative optical diffraction tomography. J Lightwave Technol 2018; 36(23): 5754-5763. DOI: 10.1109/JLT.2018.2876070.
- Lehmberg R, Stamper J. Depolarization in laser probing of inhomogeneous magnetized plasmas. Tech rep. Naval Research Lab, Washington, DC (USA): 1978.
- Joshi C. The nonlinear optics of plasmas. Physica Scripta 1990; T30: 90. DOI: 10.1088/0031-8949/1990/T30/013.
- Sung Y, Choi W, Fang-Yen C, Badizadegan K, Dasari RR, Feld MS. Optical diffraction tomography for high resolution live cell imaging. Opt Express 2009; 17(1): 266-277. DOI: 10.1364/OE.17.000266.
- Müller P. Optical diffraction tomography for single cells. Doctoral thesis. Dresden: Technische Universität Dresden; 2016.
- Tatarski VI. Wave propagation in a turbulent medium. Courier Dover Publications; 2016. DOI: 10.1007/978-1-4899-0256-5.
- Kotlyar V. Numerical solution of Maxwell’s equations in the diffractive optics problems. Computer Optics 2006; 29: 24-40.
- Kotlyar V, Lichmanov M. Analysis of light diffraction by microoptics elements using the integral equation solution by the finite element method. Computer Optics 2001; 21: 19-22.
- Kotlyar V, Lichmanov M. Electromagnetic wave diffraction by an infinite circular cylinder with homogeneous layers. Computer Optics 2002; 24: 26-32.
- Bockasten K. Transformation of observed radiances into radial distribution of the emission of a plasma. J Opt Soc Am 1961; 51(9): 943-947. DOI: 10.1364/JOSA.51.000943.
- Vest C. Interferometry of strongly refracting axisymmetric phase objects. Appl Opt 1975; 14(7): 1601-1606. DOI: 10.1364/AO.14.001601.
- Kosarev EL. Applications of integral equations of the first kind in experiment physics. Comput Phys Commun 1980; 20: 69-75. DOI: 10.1016/0010-4655(80)90110-1.
- Deutsch M, Beniaminy I. Inversion of Abel’s integral equation for experimental data. J Appl Phys 1983; 54(1): 137-143. DOI: 10.1063/1.331739.
- Kalal M, Nugent KA. Abel inversion using fast Fourier transforms. Appl Opt 1988; 27(10): 1956-1959. DOI: 10.1364/AO.27.001956.
- Marks DL. A family of approximations spanning the Born and Rytov scattering series. Opt Express 2006; 14(19): 8837-8848. DOI: 10.1364/OE.14.008837.
- Chen B, Stamnes JJ. Validity of diffraction tomography based on the first born and the first rytov approximations. Appl Opt 1998; 37(14): 2996-3006. DOI: 10.1364/AO.37.002996.
- Sung Y, Barbastathis G. Rytov approximation for x-ray phase imaging. Opt Express 2013; 21(3): 2674-2682. DOI: 10.1364/OE.21.002674.
- Potvin G. General Rytov approximation. J Opt Soc Am A 2015; 32(10): 1848-1856. DOI: 10.1364/JOSAA.32.001848.
- Parkevich E, Khiryanova A, Khiryanov T, Tolbukhin DV, Bolotov YaK, Ambrozevich SA. On the quantitative evaluation of laser diffraction by plasma formations with a micron-sized diameter. Bull Lebedev Phys Inst 2023; 50(2): 540-544. DOI: 10.3103/S1068335623120126.
- Parkevich E, Khirianova A, Khirianov T, Smaznova KT, Tolbukhin DV, Romanova VM, Kozin IA, Ambrozevich SA. Strong diffraction effects accompany the transmission of a laser beam through inhomogeneous plasma microstructures. Phys Rev E 2024; 109: 055204. DOI: 10.1103/PhysRevE.109.055204.
- Rytov SM, Kravtsov YA, Tatarskii VI. Introduction to statistical radiophysics. Berlin: Springer; 1978. ISBN: 978-3-642-67153-1.
- Bracewell RN. The Fourier transform and its applications. 3rd ed. New York: McGraw-Hill Book Company Inc; 1965. ISBN: 0-07-303938-1.
- Abbey B, Nugent KA, Williams GJ, Clark JN, Peele AG, Pfeifer MA, de Jonge M, McNulty I. Keyhole coherent diffractive imaging. Nat Phys 2008; 4(5): 394-398. DOI: 10.1038/nphys896.
- Popov NL, Artyukov IA, Vinogradov AV, Protopopov VV. Wave packet in the phase problem in optics and ptychography. Phys-Usp 2020; 63(8): 766. DOI: 10.3367/UFNe.2020.05.038775.
- Bracewell RN. Strip integration in radio astronomy. Aust J Phys 1956; 9: 198-217. DOI: 10.1071/PH560198.
- Goodman JW. Introduction to Fourier optics. 3rd ed. Englewood, Colorado: Roberts and Company publishers; 2005. ISBN: 978-0-9747077-2-3.
- Parkevich E, Khirianova A, Khirianov T, Smaznova KT, Tolbukhin DV, Bolotov YaK, Ambrozevich SA. An efficient method for determining the output plane of a small-sized phase object in application to its image processing. J Russ Laser Res 2023; 44: 566-575. DOI: 10.1007/s10946-023-10164-4.
- Parkevich E, Khirianova A, Khirianov T, et al. Parameters of Electric Spark Microchannels in the Near-Anode Region of the Discharge. Bull Lebedev Phys Inst 2023; 50(11): S1283-S1286. DOI: 10.3103/S1068335623602029.
- Smith JO. Spectral audio signal processing. Center for Computer Research in Music and Acoustics (CCRMA). 2011. Source: <https://ccrma.stanford.edu/~jos/sasp/>.
© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20