(17) * << * >> * Russian * English * Content * All Issues

Third-order aberrations of gradient optical systems with twofold symmetry
R. E. Ilinsky
Bauman Moscow State Technical University

 PDF, 364 kB

Pages: 56-62.

Full text of article: Russian language.

Abstract:
The explicit coefficients of geometric third-order aberrations are obtained for gradient optical systems with twofold symmetry.

Citation:
Ilinsky RE. Third-order aberrations of gradient optical systems with twofold symmetry. Computer Optics 1997; 17: 56-62.

References:

  1. Slyusarev GG. Methods of calculating optical systems. Leningrad: Mashinostroenie Publisher; 1969; 670.
  2. Zakaznov NP, Kiryushin SI, Kuzichev VI. Theory of optical systems. Moscow: Mashinostroenie Publisher; 1992; 448.
  3. Rusinov MM. Composition of optical systems. Leningrad: Mashinostroenie Publisher; 1989; 383.
  4. Kazakov VI, Nemtseva GE. Anamorphic cylindrical system with axial gradient. Inventor’s certificate 1786461 USSR, MKI G02 V 13/08; 5.
  5. C. Chen, L.He The calculation of primary aberration of a torus // Optik.-1991.-b.87, No3 (1991). -s.115-117.
  6. Greisukh GI, Efimenko IM, Stepanov SA. Optics of gradient and diffractive elements. Moscow: Radio i Svyaz Publisher; 1990; 136.
  7. Sands P.J. Third-order aberrations of inhomogeneous lenses // J. Opt.Soc. Am.-1970.-Vol.60, No 11.-P.1436-1443.
  8. Ilinsky RE, Rovenskaya TS. Ray differentials in an optical system. Vestnik MGTU. Series: Priborostroenie; 1995; 3: 100-108.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20