(43-5) 04 * << * >> * Russian * English * Content * All Issues
  
Asymmetric hypergeometric laser beams
V.V. Kotlyar1,2, A.A. Kovalev1,2, E.G. Abramochkin3
  1 IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,  
  Molodogvardeyskaya 151, 443001, Samara, Russia,  
  2 Samara National Research University,
Moskovskoye Shosse 34, 443086, Samara, Russia,  
  3 Samara Branch of P.N. Lebedev Physical Institute of Russian Academy of Sciences, Samara, Russia
  PDF, 890 kB
DOI: 10.18287/2412-6179-2019-43-5-735-740
Pages: 735-740.
Full text of article: Russian language.
 
Abstract:
Here we study asymmetric  Kummer beams (aK-beams) with their scalar complex amplitude being proportional  to the Kummer function (a degenerate hypergeometric function). These beams are  an exact solution of the paraxial propagation equation (Schrödinger-type  equation) and obtained from the conventional symmetric hypergeometric beams by  a complex shift of the transverse coordinates. On propagation, the aK-beams  change their intensity weakly and rotate around the optical axis. These beams  are an example of vortex laser beams with a fractional orbital angular momentum  (OAM), which depends on four parameters: the vortex topological charge, the  shift magnitude, the logarithmic axicon parameter and the degree of the radial  factor. Changing these parameters, it is possible to control the beam OAM,  either continuously increasing or decreasing it.
Keywords:
optical vortex,  asymmetric laser beam, Kummer function, hypergeometric function, logarithmical  axicon, orbital angular momentum.
Citation:
  Kotlyar VV, Kovalev AA,  Abramochkin EG. Asymmetric hypergeometric laser beams. Computer Optics 2019;  43(5): 735-740. DOI: 10.18287/2412-6179-2019-43-5-734-740.
Acknowledgements:
The work was partly  funded by the Russian Science Foundation under grant #18-19-00595  ("Shifted Kummer beams"), the Russian Foundation for Basic Research  under grant # 18-29-20003 ("Orbital angular momentum of the asymmetrical  Kummer beam"), and the RF Ministry of Science and Higher Education within  a state contract with the "Crystallography and Photonics" Research  Center of the RAS under agreement 007-ГЗ/Ч3363/26 ("Numerical  simulation").
References:
  - Kotlyar VV, Kovalev AA. Family of  hypergeometric laser beams. J Opt Soc Am A 2008; 25(1): 262-270. DOI: 10.1364/JOSAA.25.000262.
 
  - Janicijevic LJ, Topuzoski S,  Stoyanov L, Dreischuh A. Fraunhofer diffraction of a Gaussian beam by a  four-sector binary grating with a half period fringes shift between adjacent  sectors. Opt Quant Electr 2019; 51: 71.
 
  - Kotlyar VV, Kovalev AA, Soifer VA.  Asymmetric Bessel modes. Opt Lett 2014; 39(8): 2395-2398. DOI:  10.1364/OL.39.002395.
 
  - Kovalev AA, Kotlyar VV, Porfirev AP.  Asymmetric Laguerre-Gaussian beams. Phys Rev A 2016; 93(6): 063858. DOI:  10.1103/PhysRevA.93.063858.
 
  - Durnin J, Miceli JJ, Eberly JH.  Diffraction-free beams. Phys Rev Lett 1987; 58: 1499-1501.
 
  - Allen L, Beijersbergen MW, Spreeuw  RJC, Woerdman JP. Orbital angular momentum of light and the transformation of  Laguerre-Gaussian laser modes. Phys Rev A 1992; 45: 8185-8189.
 
  - Barcelo-Chong A, Estrada-Portillo B,  Canales-Benavides A, Lopez-Aguayo S. Asymmetric Mathieu beams. Chin Opt Lett  2018; 16(12): 122601.
 
  - Zhao Q, Gong L, Li YM. Shaping  diffraction-free Lommel beams with digital binary amplitude masks. Appl Opt  2015; 54(25): 7553-7558.
 
  - Anguiano-Morales M. Self-healing  properties of asymmetric Bessel beams. Opt Quant Electr 2018; 50: 363.
 
  - Wu Q, Ren Z. Study of the  nonparaxial propagation of asymmetric Bessel-Gauss beams by using virtual  source method. Opt Commun 2019; 432: 8-12.
 
  - Alam SU, Rao AS, Ghosh A, Vaity P,  Samanta GK. Nonlinear frequency doubling characteristics of asymmetric vortices  of tunable, broad orbital angular momentum spectrum. Appl Phys Lett 2018;  112(17): 171102.
 
  - Sedletskii AM. Asymptotics of the  zeros of degenerate hypergeometric functions. Mathematical Notes 2007; 82(2):  229-237.
 
  - Abramowitz M, Stegun IA, eds. Handbook of  mathematical functions. New York: Dover Publications Inc; 1965.
  
  
 
  
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7  (846)  242-41-24 (ответственный
      секретарь), +7 (846)
      332-56-22 (технический  редактор), факс: +7 (846) 332-56-20