(43-5) 05 * << * >> * Russian * English * Content * All Issues
  
Determination of  microrelief of the sample by singular beams superposition
B. Sokolenko1, N. Shostka2, O. Karakchieva2, A.V. Volyar1, D. Poletayev1
  1 V.I. Vernadsky Crimean Federal University, Institute of Physics and Technology,  
295007, Vernadsky av., Simferopol, Russia,
2 V.I. Vernadsky Crimean Federal University, Scientific Research department
  PDF, 1117 kB
DOI: 10.18287/2412-6179-2019-43-5-741-746
Pages: 741-746.
Full text of article: English language.
Abstract:
In present paper we  propose easy way to implement method of interfering vortices with opposite  topological charge for the real time determination of the thickness and  information about the surface of studied samples with the resolution up to 7 nanometers.  The determination of the characteristics of the medial cross-section of  submicron-objects becomes possible due to phase sensitivity of interfering  singular beams to the slightest changes in the optical path difference between  them. The dependence of rotational angle of resulting interference pattern in  case of different sample thickness for two singular beams superposition is  considered in detail.
Keywords:
optical vortex, phase,  optical microscopy, singular beams, surface relief detection.
Citation:
Sokolenko B, Shostka N,  Karakchieva O, Volyar AV, Poletaev D. Determination of microrelief of the  sample by singular beams superposition. Computer Optics 2019; 43(5): 741-746.  DOI: 10.18287/2412-6179-2019-43-5-741-746.
Acknowledgements:
This work was supported  by the Russian Foundation for Basic Research (RFBR) and the Council of  Ministers of Crimea grant № 19-42-910010, № 17-42-92020 and partially supported  by the V. I. Vernadsky Crimean Federal University Development Program  for 2015–2024 and Foundation for Assistance to Small Innovative Enterprises  (Russian Federation) (Grant №11540GU/2017 (0033028). The results of the work  were reported and discussed at the international conference “Digital singular  optical optics”, September 17-21, 2018, Sevastopol.
References:
      - Sprague  R. Surface roughness measurement using white light speckle. Appl Opt 1972;  11(12): 2811-2816. DOI: 10.1364/AO.11.002811.
 
      - Sokolenko  B, Poletaev D, Prisyajniuk A. Surface roughness sensing with singular vortex  beams. Imaging and Applied Optics 2018: JM4A.35. DOI: 10.1364/3D.2018.JM4A.35.
 
      - Huang  Y-Ch, Chou Ch, Chou L-Y, Shyu J-Ch, Chang M. Polarized optical heterodyne  profilometer. Jpn J Appl Phys 1998; 37(1): 351. DOI: 10.1143/JJAP.37.351.
 
      - Rubinsztein-Dunlop  H, et al. Roadmap on structured light. J Opt 2017; 19(1): 013001. DOI:  10.1088/2040-8978/19/1/013001.
 
      - Meyer  E, et al. Scanning probe microscopy: The lab on a tip. Berlin, Heidelberg:  Springer-Verlag; 2003.
 
      - Han  R, et al. Recent advances in superresolution fluorescence imaging and its  applications in biology. J Gene Genomics 2013; 40(12): 583-595. DOI:  10.1016/j.jgg.2013.11.003.
 
      - Dickenson  NE, et al. Near-field scanning optical microscopy: a tool for nanometric  exploration of biological membranes. Anal Bioanal Chem 2010; 396(1): 31-43.  DOI: 10.1007/s00216-009-3040-1.
 
      - Klementieva  NV, et al. The principles of super-resolution fluorescence microscopy (Review).  Sovremennye tehnologii v medicine 2016; 8(2): 130-140. DOI:  10.17691/stm2016.8.2.17.
 
      - Westphal  V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW. Video-rate far-field  optical nanoscopy dissects synaptic vesicle movement. Science 2008; 320(5873):  246-249. DOI: 10.1126/science.1154228.
 
      - Neupane  B, et al. Review of recent developments in stimulated emission depletion  microscopy: applications on cell imaging. J Biomed Opt 2014; 19(8): 080901.  DOI: 10.1117/1.JBO.19.8.080901.
 
      - Török  P, Munro P. The use of Gauss–Laguerre vector beams in STED microscopy. Opt  Express 2004; 12: 3605-3617. DOI: 10.1364/OPEX.12.003605.
 
      - Popiołek-Masajada  A, Masajada J, Szatkowski M. Internal scanning method as unique imaging method  of optical vortex scanning microscope. Opt Laser Eng 2018; 105: 201-208. DOI:  10.1016/j.optlaseng.2018.01.016.
 
      - Pham  QD, Hayasaki Y. Optical frequency comb profilometry using a single-pixel camera  composed of digital micromirror devices. Appl Opt 2015; 54(1): A39-A44. DOI:  10.1364/AO.54.000A39.
 
      - Sasaki  O, Okazaki H. Sinusoidal phase modulating interferometry for surface profile  measurement. Appl Opt 1986; 25(18): 3137-3140. DOI: 10.1364/AO.25.003137.
 
      - Belyi  V, Kroening M, Kazak N, Khilo N, Mashchenko A, Ropot P. Bessel beam based  optical profilometry. Proc SPIE 2005; 5964: 59640L. DOI: 10.1117/12.624491.
 
      - Vorontsov  EN, Losevsky NN, Prokopova DV, Razueva EV, Samagin SA. Study on generating light  fields with the intensity patterns characterized by different rotational rates.  Computer Optics 2016; 40(2): 158-163. DOI:  10.18287/2412-6179-2016-40-2-158-163.
 
      - Vorontsov  EN, Kotova SP, Losevsky NN, et al. Effect of amplitude and phase distortions on  the formation of light fields with rotating intensity distribution. Bulletin of  the Lebedev Physics Institute 2018; 45(3): 71-74. DOI:  10.3103/S1068335618030028.
 
      - Bouchal  P, Štrbková L, Dostál Z, Bouchal Z. Vortex topographic microscopy for  full-field reference-free imaging and testing. Opt Express 2017; 25(18):  21428-21443. DOI: 10.1364/OE.25.021428.
 
      - Baránek  M, Bouchal P, Šiler M and Bouchal Z. Aberration resistant axial localization  using a self-imaging of vortices Opt Express 2015; 23: 15316-15331. DOI: 10.1364/OE.23.015316.
 
      - Pavani  SRP, Piestun R. High-efficiency rotating point spread functions. Opt Express  2008; 16: 3484-3489. DOI: 10.1364/OE.16.003484.
 
      - Sokolenko  B, Poletaev D, Halilov S. Phase shifting profilometry with optical vortices. J  Phys: Conf Ser 2017; 917(6): 062047. DOI: 10.1088/1742-6596/917/6/062047.
 
      - Shostka  NV, Ivanov MO, Shostka VI. Controllable optical trap arrays. Tech Phys Lett  2016; 42: 944. DOI: 10.1134/S106378501609025X.
 
      - Shvedov  V, et al. A long-range polarization-controlled optical tractor beam. Nat Photon  2014; 8(11): 846-850. DOI: 10.1038/nphoton.2014.242.
 
      - Simpson  NB, Allen L, Padgett MJ. Optical tweezers and optical spanners with  Laguerre–Gaussian modes. J Mod Opt 1996; 43(12): 2485-2491. DOI:  10.1080/09500349608230675.
 
      - Dasgupta  R, Verma RS, Ahlawat S, Chaturvedi D, Gupta PK. Long-distance axial trapping  with Laguerre–Gaussian beams. Appl Opt 2011; 50(10): 1469-1476. DOI:  10.1364/AO.50.001469.
 
      - Simpson  SH, Hanna S. Rotation of absorbing spheres in Laguerre–Gaussian beams. J Opt  Soc Am A 2009; 26(1): 173-183. DOI: 10.1364/JOSAA.26.000173.
 
      - Simpson  SH and Hanna S. Orbital motion of optically trapped particles in  Laguerre–Gaussian beams. J Opt Soc Am A 2010; 27(9): 2061-2071. DOI:  10.1364/JOSAA.27.002061.
 
      - Cao  Y, Zhu T, Lv Y, Ding W. Spin-controlled orbital motion in tightly focused  high-order Laguerre-Gaussian beams. Opt Express 2016; 24(4): 3377-3384. DOI:  10.1364/OE.24.003377.
 
      - Kiselev  AD and Plutenko DO. Optical trapping by Laguerre-Gaussian beams: Far-field  matching, equilibria, and dynamics. Phys. Rev. A 2016; 94, 013804-0138019. DOI:  10.1103/PhysRevA.94.013804.
 
      - Klykov  SS, Fedosov IV, Tuchin VV. Dynamic analysis of optical cell trapping in the ray  optics regime. Computer Optics 2015; 39(5): 694-701. DOI:  10.18287/0134-2452-2015-39-5-694-701.
 
      - Porfirev  AP, Kovalev AA, Kotlyar VV. Optical trapping and moving of microparticles using  asymmetrical Bessel-Gaussian beams. Computer Optics 2016; 40(2): 152-157. DOI:  10.18287/2412-6179-2016-40-2-152-157.
 
      - Kovalev  AA, Kotlyar VV, Zaskanov SG, Kalinkina DS. Laguerre-Gaussian beams with complex  shift in Cartesian coordinates. Computer Optics 2016; 40(1): 5-11. DOI:  10.18287/2412-6179-2016-40-1-5-11.
 
      - Karpeev  SV, Paranin VD, Kirilenko MS. Comparison of the stability of Laguerrе-Gauss  vortex beams to random fluctuations of the optical environment. Computer Optics  2017; 41(2): 208-217. DOI: 10.18287/2412-6179-2017-41-2-208-217.
 
      - Vickers  J, et al. Phase and interference properties of optical vortex beams. J Opt Soc  Am A 2008; 25(3), 823-827. DOI: 10.1364/JOSAA.25.000823.
 
      - Soskin  MS, Vasnetsov MV. Singular optics. Progress in Optics 2001; 42: 262. DOI:  10.1016/S0079-6638(01)80018-4.
 
      - Bekshaev  A, Orlinska O, Vasnetsov M. Optical vortex generation with a “fork” hologram  under conditions of high-angle diffraction. Opt Comm 2010; 283(10): 2006-2016.  DOI: 10.1016/j.optcom.2010.01.012.
 
      - Soskin  MS, Polyanskii PV, Arkhelyuk OO. Computer-synthesized hologram-based rainbow  optical vortices. New J Phys 2004; 6: 196–204. DOI: 10.1088/1367-2630/6/1/196.
 
      - Khonina  SN, Karpeev SV, Alferov SV, Savelyev DA, Laukkanen J, Turunen J. Experimental  demonstration of the generation of the longitudinal E-field component on the  optical axis with high-numerical-aperture binary axicons illuminated by  linearly and circularly polarized beams. Opt Express 2013; 16(5): 085704. DOI:  10.1088/2040-8978/15/8/085704.
 
      - Khonina SN, Alferov SV, Karpeev SV. Strengthening  the longitudinal component of the sharply focused electric field by means of  higher-order laser beams. Opt Lett 2013; 38(17): 3223-3226. DOI: 10.1364/OL.38.003223.
      
 
  
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7  (846)  242-41-24 (ответственный
      секретарь), +7 (846)
      332-56-22 (технический  редактор), факс: +7 (846) 332-56-20