(43-5) 06 * << * >> * Russian * English * Content * All Issues
  
Application of the  coupled classical oscillators model to the Fano resonance build-up in a  plasmonic nanosystem
P.A. Golovinski1,2, A.V. Yakovets1, E.S. Khramov1
  1 Moscow Institute of Physics and Technology (State University),  
  9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia,  
  2 Voronezh State Technical University,  
  20 let Oktyabrya st., 84, Voronezh, 394006, Russia
  PDF, 1750 kB
DOI: 10.18287/2412-6179-2019-43-5-747-755
Pages: 747-755.
Full text of article: Russian language.
 
Abstract:
We study the excitation  dynamics of Fano resonance within the classical model framework of two linear  coupled oscillators. An exact solution for the model with a damped harmonic  force is obtained. Details of the growth of a Fano profile under the harmonic  excitation are shown. For an incident ultra-wideband pulse, the reaction of the  system becomes universal and coincides with the time-dependent response  function. The results of numerical calculations clarify two alternative ways  for the experimental measurement of complete characteristics of the system: via  direct observation of the system response to a monochromatic force by frequency  scanning or recording the time-dependent response to a d-pulse. As a specific example, the time-dependent excitation in a system  consisting of a quantum dot and a metal nanoparticle is calculated. Then, we  show the use of an extended model of damped oscillators with radiative  correction to describe the plasmon Fano resonance build-up when a femtosecond  laser pulse is scattered by a nanoantenna.
Keywords:
Fano resonance, model of  coupled oscillators, ultrashort laser pulse, nanoantenna.
Citation:
  Golovinski PA, Yakovets  AV, Khramov ES. Application of the coupled classical oscillators model to the  Fano resonance build-up in a plasmonic nanosystem. Computer Optics 2019; 43(5):  747-755. DOI: 10.18287/2412-6179-2019-43-5-747-755.
Acknowledgements:
This work was supported  by the State Contract of the RF Ministry of Education and Science (assignment  No. 3.9890.2017/8.9).
References:
  - Allen  L, Eberly J. Optical resonance and two-level atoms. Courier Corporation; 1975.
 
  - Akulin  VM, Karlov NV. Intensive resonant interactions in  quantum electronics. Springer; 1991.
 
  - Astapenko  V. Interaction of ultrashort electromagnetic pulses with matter. New York: Springer;  2013.
 
  - Arustamyan  MG, Astapenko VA. Phase control of two-level system excitation by short laser  pulses. Laser Phys 2008; 18: 768-773.
 
  - Astapenko VA, Romadanovskii MS. Excitation of  two-level system by chirped laser pulse. Laser Phys 2009; 19: 969-973.
 
  - Fano  U. Effects of configuration interaction on intensities and phase shifts. Phys  Rev 1961; 13: 1866.
 
  - Lisitsa  VS, Yakovlenko SI. Resonance of discrete states against the background of a  continuous spectrum. JETP 1974; 39: 975-980.
 
  - Feshbach  H. Unified theory of nuclear reactions. Ann Phys 1958; 5: 357-390.
 
  - Rosmej  FB, Astapenko VA, Lisitsa VS. Effect of ultrashort  laser-pulse duration on Fano resonances in atomic spectra. Phys Rev A 2014; 90:  043421.
 
  - Bixon  M, Jortner J. Intramolecular radiation transitions. J Chem Phys 1968; 48:  715-726.
 
  - Uzer  T, Miller WH. Theories of intermolecular vibrational energy transfer. Phys Rep  1991; 199: 73-146.
 
  - Osherov  VI, Medvedev ES. Theory of nonradiative transitions in polyatomic molecules [In  Russian]. Moscow:  "Nauka" Publisher; 1983.
 
  - Agranovich  VM, Galanin MD. Electron-excitation energy transfer in condensed media. Moscow: "Nauka"  Publisher; 1978.
 
  - Chin  C, Grimm R, Julienne P, Tiesinga E. Feshbach resonances in ultracold gases. Rev  Mod Phys 2010; 82: 1225-1286.
 
  - Miroshnichenko  AE. Fano resonances in nanoscale structures. Rev Mod Phys 2010; 82: 2257-2298.
 
  - Förstner  J, Weber C, Danckwerts J, Knorr A. Phonon-assisted damping of Rabi oscillations  in semiconductor quantum dots. Phys Rev Lett 2003; 91: 127401.
 
  - Verzelen  O, Ferreira R, Bastard G. Excitonic polarons insemiconductor quantum dots. Phys  Rev Lett 2002; 88: 146803.
 
  - Xu  SJ. Resonant coupling of bound excitons with LO phonons in ZnO: Excitonic polaron  states and Fano resonance. J Chem Phys 2005; 123: 221105.
 
  - Kerfoot  ML, Govorov AO, Czarncki C, Lu D, Gad YN, Bracker   AS, Gammon D, Scheiber M.  Optophononics with coupled quantum dots. Nat Commun 2014; 5: 3299.
 
  - Hetz  R, Mukhametzhanov I, Stier O, Madhukar A, Bimberg D. Enhanced polar  ecxiton-LO-phonon interaction in quantum dots. Phys Rev Lett 1999; 83: 4654.
 
  - Cheng  M-T, Song Y-Y. Fano resonance analysis in a pair of semiconductor quantum dots  coupling to a metal nanowire. Opt Lett 2012; 37: 978-980.
 
  - Shoh  RA, Scherer NF, Pelton M, Gray SK. Ultrafast reversal of Fano resonance in  plasmon-exciton system. Phys Rev B 2013; 88: 075411.
 
  - Marinica  DC, Lourenço-Martins H, Aizpurua J, Borisov AG. Plexciton quenching by resonant  electron transfer from quantum emitter to metallic nanoantenna. Nano Lett 2013;  13: 5972-5978.
 
  - Zhang  W, Govorov AO, Bryant GW. Semiconductor-metal nanoparticle molecules: Hybrid  excitons and the nonlinear effect. Phys Rev Lett 2006; 97: 146804.
 
  - Manjavacas  A, Garcíde Abajo FJ, Nordlander P. Quantum plexcitons: Strongly interacting  plasmons and exitons. Nano Lett 2011; 11: 2118-2323.
 
  - Artuso RD, Bryant GW. Hybrid quantum  dot-metal nanoparticle systems: connecting the dots. Acta Phys Pol A 2012; 122:  289-293.
 
  - Andrianov  ES, Pukhov AA, Vinogradov AP, Dorofeenko AV, Lisyansky AA. Modification of the  resonance fluorescence spectrum of a two-level atom in the near field of a  plasmonic nanoparticle. JETP Lett 2013; 97(8): 452-458.
 
  - Yang  J, Perrin M, Lalanne P. Analytical Formalism for the interaction of two-level  quantum systems with metal nanoresonators. Phys Rev X 2015; 5: 021008.
 
  - Hartsfield  T, Chang W-S, Yang S-C, Ma T, Shi J, Sun L, Shvets G, Link S, Li X. Single  quantum dot controls a plasmonic cavity’s scattering and anisotropy. PNAS 2015;  112: 12288-12292.
 
  - Andryushin  AI, Kazakov AE, Fedorov MV. Effect of resonant electromagnetic field on the  autoionizing states of atoms. JETP 1982; 55: 53-58.
 
  - Kiröla  E, Eberly JH. Quasicontinuum effects in molecular excitation. J Chem Phys 1985;  82: 1841-1854.
 
  - Knight  PL, Lauder MA, Dalton  BJ. Laser-induced continuum structure. Phys Rep 1990; 190: 1-61.
 
  - Zhang  SB, Rohringer N. Photoemission spectroscopy with high-intensity  short-wavelength lasers. Phys Rev A 2014; 89: 013407.
 
  - Riffe  DM. Classical Fano oscillator. Phys Rev B 2011; 84: 064308.
 
  - Limonov  MF, et al. Fano resonances in photonics. Nat Photon 2017; 11: 543-554.
 
  - Joe  YS, Satanin AM, Kim CS. Classical analogy of Fano resonances. Phys Scr 2006;  74: 259-266.
 
  - Misochko  OV, Lebedev MV. Fano interference at the excitation of coherent phonons:  Relation between the asymmetry parameter and the initial phase of coherent  oscillations. JETP 2015; 120: 651-663.
 
  - Li  R, Fu J, Wu Q, Zhang K, Chen W, Wang Z, Ma R. Analysis and modeling of Fano  resonances using equivalent circuit elements. Sci Rep 2016; 6: 31884.
 
  - Mirin  NA, Bao K, Nordlander P. Fano resonances in plasmonic nanoparticle aggregates.  J Phys Chem A 2009; 113: 4028-4034.
 
  - Kui  B, Heidar S, Peter N. Plasmon hybridization for real metals. Chin Sc Bull 2010;  55: 2629-2634.
 
  - Mukherjee  S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ. Fanoshells:  Nanoparticles with built-in Fano resonances. Nano Lett 2010; 10: 2694-2701.
 
  - Wu  X, Gray SK, Pelton M. Quantum-dot transparency in a nanoscale plasmonic  resonator. Opt Express 2010; 18: 23633-23645.
 
  - Lovera  A, Gallinet B, Nordlander P, Martin JF. Mechanisms of Fano resonances in  coupled plasmonic systems. ACS Nano 2013; 7: 4527-4536.
 
  - Kats  MA, Yu N, Genevet P, Gaburro Z, Capasso F. Effect of radiation damping on the  spectral response of plasmonic components. Opt Express 2011; 19: 21749-21753.
 
  - Anderson A, Deryckx KS, Xu GX, Steinmeyer G, Raschke MB.  Few-femtosecond plasmon dephasing of a single metallic nanostructure from  optical response function reconstruction by interferometric frequency resolved  optical gating. Nano Lett 2010; 10: 2519-2524.
 
  - Ruan Z, Fan S. Temporal coupled-mode theory for  light scattering by an arbitrarily shaped object supporting a single resonance.  Phys Rev A 2012; 85: 043828.
  
  
 
  
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7  (846)  242-41-24 (ответственный
      секретарь), +7 (846)
      332-56-22 (технический  редактор), факс: +7 (846) 332-56-20