(43-5) 07 * << * >> * Russian * English * Content * All Issues

Design, fabrication and investigation of a subwavelength axicon for terahertz beam polarization transforming

S.N. Khonina1,2, K.N. Tukmakov1,2, S.A. Degtyarev1,2, A.S. Reshetnikov1, V.S. Pavelyev1,2, B.A. Knyazev1,3,4, Yu.Yu. Choporova1,3,4

Samara National Research University,
443086, Russia, Samara, Moskovskoye Shosse 34,  
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,  
Molodogvardeyskaya 151, 443001, Samara, Russia,  
Budker Institute of Nuclear Physics of SB RAS, Novosibirsk, Russia,  
Novosibirsk State University, Novosibirsk, Russia

 PDF, 1388 kB

DOI: 10.18287/2412-6179-2019-43-5-756-764

Pages: 756-764.

Full text of article: Russian language.

Abstract:
A silicon subwavelengh terahertz axicon has been designed, fabricated, and investigated by methods of numerical and optical experiments. The research has been performed on a free-electron laser workstation NOVOFEL (Budker Institute of Nuclear Physics of SB RAS, Novosibirsk). Diffractive and polarization features of realized element have been investigated.

Keywords:
diffractive optical element, free electron laser, terahertz radiation, subwavelength axicon.

Citation:
Khonina SN, Tukmakov KN, Degtyarev SA, Reshetnikov AS, Pavelyev VS, Knyazev BA, Choporova YuYu. Design, fabrication and investigation of a silicon subwavelength terahertz axicon. Computer Optics 2019; 43(5): 756-764. DOI: 10.18287/2412-6179-2019-43-5-756-764.

Acknowledgements:
This work was financially supported by the Russian Science Foundation  under RSF grant No. 19-72-20202.

References:

  1. Kulipanov GN, Bagryanskaya EG, Chesnokov EN, Choporova YuYu, Gerasimov VV, Getmanov YaV, Kiselev SL, Knyazev BA, Kubarev VV, Peltek SE, Popik VM, Salikova TV, Scheglov MA, Seredniakov SS, Shevchenko OA, Skrinsky AN, Veber SL, Vinokurov NA. Novosibirsk free electron laser-facility description and recent experiments. IEEE transactions on terahertz science and technology 2015; 5(5): 798-809. DOI: 10.1109/TTHZ.2015.2453121.
  2. Walsby ED, Wang S, Xu J, Yuan T, Blaikie R, Durbin SM, Zhang X-C, Cumming DRS. Multilevel silicon diffractive optics for terahertz waves. J Vac Sci Technol B 2002; 20(6): 2780.
  3. Furlan WD, Ferrando V, Monsoriu JA, Zagrajek P, Czerwinska E, Szustakowski M. 3D printed diffractive terahertz lenses. Opt Lett 2016; 41(8): 1748-1751. DOI: 10.1364/OL.41.001748.
  4. Agafonov AN, Volodkin BO, Kaveev AK, Knyazev BA, Kropotov GI, Pavel’ev VS, Soifer VA, Tukmakov KN, Tsygankova EV, Choporova YuYu. Silicon diffractive optical elements for high-power monochromatic terahertz radiation. Optoelectronics, Instrumentation and Data Processing 2013; 2(49): 189-195. DOI: 10.3103/S875669901302012X.
  5. Knyazev BA, Cherkassky VS, Choporova YuYu, Gerasimov VV, Vlasenko MG, Dem’yanenko MA, Esaev DG. Real-time imaging using a high-power monochromatic terahertz source: Comparative description of imaging techniques with examples of application. J Infrared Milli Terahz Waves 2011; 32(10): 1207-1222.
  6. Soifer VA, ed. Methods for computer design of diffractive optical elements. New York: John Wiley and Sons Inc; 2002. ISBN: 978-0-471-09533-0.
  7. Agafonov AN, Volodkin BO, Volotovsky SG, Kaveev AK, Knyazev BA, Kropotov GI, Pavel’ev VS, Tukmakov KN, Tsygankova EV, Tsypishka DI, Choporova YuYu. Silicon optics for focusing of terahertz laser radiation in a given two-dimensional domain. Computer Optics 2013; 37(4): 464-470.
  8. Agafonov AN, Choporova YuYu, Kaveev AK, Knyazev BA, Kropotov GI, Pavel’ev VS, Tukmakov KN, Volodkin BO. Control of transverse mode spectrum of Novosibirsk free electron laser radiation. Appl Opt 2015; 54: 3635-3639.
  9. Choporova YuYu, Knyazev BA, Kulipanov GN, Pavelyev VS, Scheglov MA, Vinokurov NA, Volodkin BO, Zhabin VN. High-power Bessel beams with orbital angular momentum in the terahertz range. Phys Rev A 2017; 96: 023846. DOI: 10.1103/PhysRevA.96.023846.
  10. Rubinsztein-Dunlop H, Forbes A, Berry MV, Dennis MR, Andrews DL, Mansuripur M, Denz C, Alpmann Ch, Banzer P, Bauer T, Karimi E, Marrucci L, Padgett M, Ritsch-Marte M, Litchinitser NM, Bigelow NP, Rosales-Guzmán C, Belmonte A, Torres JP, Neely TW, Baker M, Gordon R, Stilgoe AB, Romero J, White AG, Fickler R, Willner AE, Xie G, Mcmorran B, Weiner AM. Roadmap on structured light. J Opt 2017; 19(1): 013001.
  11. Chen R, Dong Y, Wang F, Cai Y. Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere. Appl Phys B 2013; 112: 247-259.
  12. Huang H, Xie G, Yan Y, Ahmed N, Ren Y, Yue Y, Rogawski D, Willner MJ, Erkmen BI, Birnbaum KM, Dolinar SJ, Lavery MPJ, Padgett MJ, Tur M, Willner AE. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt Lett 2014; 39(2): 197-200.
  13. Milione G, Nguyen TA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett 2015; 40(21): 4887-4890.
  14. Moreno I, Davis JA, Badham K, Sánchez-López MM, Holland JE, Cottrell DM. Vector beam polarization state spectrum analyzer. Sci Rep 2017; 7(1): 2216.
  15. Khonina SN, Porfirev AP, Karpeev SV. Recognition of polarization and phase states of light based on the interaction of nonuniformly polarized laser beams with singular phase structures. Opt Express 2019; 27(13): 18484-18492. DOI: 10.1364/OE.27.018484.
  16. Kraus M, Ahmed MA, Michalowski A, Voss A, Weber R, Graf T. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Opt Express 2010; 18(21): 22305.
  17. Hnatovsky C, Shvedov VG, Shostka N, Rode AV, and Krolikowski W. Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses. Opt Lett 2012; 37(2): 226-228.
  18. Alferov SV, Karpeev SV, Khonina SN, Tukmakov KN, Moiseev OYu, Shulyapov SA, Ivanov KA, Savel’ev-Trofimov AB. On the possibility of controlling laser ablation by tightly focused femtosecond radiation. Quantum Electronics 2014; 44(11): 1061-1065. DOI: 10.1070/QE2014v044n11ABEH015471.
  19. Omatsu T, Chujo K, Miyamoto K, Okida M, Nakamura K, Aoki N, Morita R. Metal microneedle fabrication using twisted light with spin. Opt Express 2010; 18(17): 17967-17973.
  20. Danilov PA, Saraeva IN, Kudryashov SI, Porfirev AP, Kuchmizhak AA, Zhizhchenko AYu, Rudenko AA, Umanskaya SF, Zayarny DA, Ionin AA, Khonina SN. Polarization-selective excitation of dye luminescence on a gold film by structured ultrashort laser pulses. JETP Letters 2018; 107(1): 15-18. DOI: 10.1134/S0021364018010034.
  21. Hell SW and Wichmann J. Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy. Opt Lett 1994; 19: 780-782.
  22. Török P, Munro PRT. The use of Gauss–Laguerre vector beams in STED microscopy. Opt Express 2004; 12: 3605-3617.
  23. Hao X, Kuang C, Wang T, Liu X. Effects of polarization on the de-excitation dark focal spot in STED microscopy. J Opt 2010; 12: 115707.
  24. Khonina SN, Golub I. Enlightening darkness to diffraction limit and beyond: comparison and optimization of different polarizations for dark spot generation. J Opt Soc Am A 2012; 29: 1470-1474. DOI: 10.1364/JOSAA.29.001470.
  25. Khonina SN, Golub I. How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy. J Opt Soc Am A 2012; 29(10): 2242-2246. DOI: 10.1364/JOSAA.29.001470.
  26. Weibin C, Zhan Q. Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam. Opt Lett 2009; 34: 722-724.
  27. Bomzon Z, Biener G, Kleiner V, and Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett 2002; 27: 1141-1143.
  28. Niv A, Biener G, Kleiner V, Hasman E. Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements. Opt Lett 2004; 29: 238-240.
  29. Stafeev SS, Kotlyar VV, Nalimov AG, Kotlyar MV, O’Faolain L. Subwavelength gratings for polarization conversion and focusing of laser light. Photon Nanostructures 2017; 27: 32-41. DOI: 10.1016/j.photonics.2017.09.001.
  30. Degtyarev SA, Volotovsky SG, Khonina SN. Sublinearly chirped metalenses for forming abruptly auto-focusing cylindrically polarized beams. J Opt Soc Am B 2018; 35(8): 1963-1969. DOI: 10.1364/JOSAB.35.001963.
  31. Durnin J, Miceli JJ, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987; 58(15): 1499-1501.
  32. Karpeev SV, Khonina SN, Volkov AV, Moiseev OYu, Kostyuk GF, Yakunenkova DM. High-aperture binary bi-axicon for far IR light: Fabrication and experimental testing using linearly polarized incident light [In Russian]. Herald of Samara State Aerospace University named by S.P. Korolyev 2010; 4(24): 215-223.
  33. Khonina SN, Savelyev DA. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam. JETP 2013; 117(4): 623-630. DOI: 10.1134/S1063776113120157.
  34. Ustinov AV, Khonina SN. Analysis of laser beam diffraction by axicon with the numerical aperture above limiting. Computer Optics 2014; 38(2): 213-222.
  35. Khonina SN, Degtyarev SA, Savelyev DA, Ustinov AV. Focused, evanescent, hollow, and collimated beams formed by microaxicons with different conical angles. Opt Express 2017; 25(16): 19052-19064. DOI: 10.1364/OE.25.019052.
  36. Lalanne P, Lemercier-Lalanne D. On the effective medium theory of subwavelength periodic structures. J Mod Opt 1996; 43: 2063-2085.
  37. Degtyarev SA, Savelyev DA, Khonina SN, and Kazanskiy NL. Metasurfaces with continuous ridges for inverse energy flux generation. Opt Express 2019; 27(11): 15129-15135. DOI: 10.1364/OE.27.015129.
  38. Silicon. Source: <http://www.tydexoptics.com/pdf/Si.pdf>.
  39. Wet-chemical etching of silicon and SiO2. Source: <http://www.microchemicals.eu/technical_information/silicon_etching.pdf>.
  40. Laermer F, Schilp A. Method of anisotropically etching silicon, Pat USA 5501893 of March 26, 1996.
  41. Jansen H, de Boer M, Unnikrishnan S, Louwerse M, Elwenspoek MC. Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment. Journal of Micromechanics and Microengineering 2009; 19: 1-41.
  42. Ayon AA. Characterization of a time multiplexed inductively coupled plasma etcher. Journal of the Electrochemical Society 1999; 146(1): 339-349.

 


© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20