(43-6) 04 * << * >> * Russian * English * Content * All Issues

Calculation of a diffractive lens having a fixed focal position  at several prescribed wavelengths

L.L. Doskolovich1,2, E.A. Bezus1,2, D.A. Bykov1,2, R.V. Skidanov1,2, N.L. Kazanskiy1,2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia,
Samara National Research University,
Moskovskoye Shosse 34, 443086, Samara, Russia

 PDF, 1109 kB

DOI: 10.18287/2412-6179-2019-43-6-946-955

Pages: 946-955.

Full text of article: Russian language.

Abstract:
A method for calculating a “spectral” diffractive lens, which ensures the preservation of the focal position at several prescribed wavelengths is proposed. The method is based on minimizing the function characterizing the difference between the complex transmission functions of the spectral lens for given wavelengths and the complex transmission functions of diffraction lenses calculated separately for each of the given wavelengths. As examples, spectral diffractive lenses are calculated for three and seven wavelengths. The simulation results of the calculated lenses confirm good performance of the proposed method.

Keywords:
diffractive optics, diffractive lens, scalar diffraction theory, Fresnel-Kirchhoff integral.

Citation:
Doskolovich LL, Bezus EA, Bykov DA, Skidanov RV, Kazanskiy NL. Calculation of a diffractive lens having a fixed focal position at several prescribed wavelengths. Computer Optics 2019; 43(6): 946-955. DOI: 10.18287/2412-6179-2019-43-6-946-955.

Acknowledgements:
Russian Foundation for Basic Research projects 18-07-00514 and 18-29-03067 (development of the method for calculating spectral diffractive lenses) and Russian Federation Ministry of Science and Higher Education within the state contract with the FSRC “Crystallography and Photonics” RAS under agreement 007-GZ/Ch3363/26 (investigation of the designed spectral diffractive lenses).

References:

  1. Swanson GJ. Binary optics technology: the theory and design of multi-level diffractive optical elements. Lexington, Massachusetts: Massachusetts Institute of Technology, Lincoln Laboratory; 1989.
  2. Davidson N, Friesem AA, Hasman E. Analytic design of hybrid diffractive-refractive achromats. Appl Opt 1993; 32(25): 4770-4774. DOI: 10.1364/AO.32.004770.
  3. Fang YC, Liu T-K, Tsai C-M, Chou J-H, Lin H-C, Lin WT. Extended optimization of chromatic aberrations via a hybrid Taguchi-genetic algorithm for zoom optics with a diffractive optical element. J Opt A: Pure Appl Opt 2009; 11(4): 045706. DOI: 10.1088/1464-4258/11/4/045706.
  4. Sweeney DW, Sommargen GE. Harmonic diffractive lenses. Appl Opt 1995; 34(14): 2469-2475. DOI: 10.1364/AO.34.002469.
  5. Rossi M, Kunz RE, Herzig HP. Refractive and diffractive properties of planar micro-optical elements. Appl Opt 1995; 34(26): 5996-6007. DOI: 10.1364/AO.34.005996.
  6. Sales TRM, Morris GM. Diffractive-refractive behavior of kinoform lenses. Appl Opt 1997; 36(1): 253-257. DOI: 10.1364/AO.36.000253.
  7. Faklis D, Morris GM. Spectral properties of multiorder diffractive lenses. Appl Opt 1995; 34: 2462-2468.
  8. Khonina SN, Volotovsky SG, Ustinov AV, Kharitonov SI. Analysis of focusing light by a harmonic diffractive lens taking into account the refractive index dispersion. Computer Optics 2017; 41(3): 338-347. DOI: 10.18287/2412-6179-2017-41-3-338-347.
  9. Wang P, Mohammad N, Menon R. Chromatic-aberration corrected diffractive lenses for ultra-broadband focusing. Sci Rep 2016; 6: 21545.
  10. Mohammad N, Meem M, Shen B, Wang P, Menon R. Broadband imaging with one planar diffractive lens. Sci Rep 2018; 8: 2799.
  11. Banerji S, Sensale-Rodriguez B. A computational design framework for efficient, fabrication error-tolerant, planar THz diffractive optical elements. Sci Rep 2019; 9: 5801.
  12. Meem M, Majumder A, Menon R. Full-color video and still imaging using two flat lenses. Opt Express 2018; 26: 26866-26871.
  13. Banerji S, Meem M, Majumder A, Vasquez FG, Sensale-Rodriguez B, Menon R. Imaging with flat optics: metalenses or diffractive lenses? Optica 2019; 6: 805-810.
  14. Doskolovich LL, Bezus EA, Morozov AA, Osipov V, Wolffsohn JS, Chichkov B. Multifocal diffractive lens generating several fixed foci at different design wavelengths. Opt Express 2018; 26(4): 4698-4709. DOI: 10.1364/OE.26.004698.
  15. Doskolovich LL, Bezus EA, Kazanskiy NL. Multifocal spectral diffractive lens. Computer Optics 2018; 42(2): 219-226. DOI: 10.18287/2412-6179-2018-42-2-219-226.
  16. Soifer V, Kotlyar V, Doskolovich L. Iterative methods for diffractive optical elements computation. London: Taylor & Francis; 1997. ISBN: 978-0-7484-0634-0.
  17. Golub MA, Doskolovich LL, Kazanskiy NL, Kharitonov SI, Soifer VA. Computer generated diffractive multi-focal lens. J Mod Opt 1992; 39(6): 1245-1251. DOI: 10.1080/713823549.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20