(43-6) 11 * << * >> * Russian * English * Content * All Issues
Joint image reconstruction and segmentation: Comparison of two algorithms for few-view tomography
V.V. Vlasov1, A.B. Konovalov1, S.V. Kolchugin1
1 Russian Federal Nuclear Center – Zababakhin Institute of Applied Physics,
Chelyabinsk Region, Snezhinsk, 456770, Russia, 13 Vasiliev Str.
PDF, 1100 kB
DOI: 10.18287/2412-6179-2019-43-6-1008-1020
Pages: 1008-1020.
Full text of article: Russian language.
Abstract:
Two algorithms of few-view tomography are compared, specifically, the iterative Potts minimization algorithm (IPMA) and the algebraic reconstruction technique with TV-regularization and adaptive segmentation (ART-TVS). Both aim to reconstruct piecewise-constant structures, use the compressed sensing theory, and combine image reconstruction and segmentation procedures. Using a numerical experiment, it is shown that either algorithm can exactly reconstruct the Shepp-Logan phantom from as small as 7 views with noise characteristic of the medical applications of X-ray tomography. However, if an object has a complicated high-frequency structure (QR-code), the minimal number of views required for its exact reconstruction increases to 17–21 for ART-TVS and to 32–34 for IPMA. The ART-TVS algorithm developed by the authors is shown to outperform IPMA in reconstruction accuracy and speed and in resistance to abnormally high noise as well. ART-TVS holds good potential for further improvement.
Keywords:
few-view tomography, image reconstruction and segmentation, compressed sensing, Potts functional, total variation, Shepp-Logan phantom, QR-code, correlation coefficient, deviation factor.
Citation:
Vlasov VV, Konovalov AB, Kolchugin SV. Joint image reconstruction and segmentation: Comparison of two algorithms for few-view tomography. Computer Optics 2019; 43(6): 1008-1020. DOI: 10.18287/2412-6179-2019-43-6-1008-1020.
References:
- Gordon R. Dose reduction in computerized tomography. Investigative Radiology1976; 11(6): 508-517. DOI: 10.1097/00004424-197611000-00002.
- Herman GT. Fundamentals of computerized tomography: image reconstruction from projections. 2nd ed. London: Springer-Verlag; 2009. ISBN: 978-1-85233-617-2.
- Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J Theor Biology 1970; 29(3): 471-482. DOI: 10.1016/0022-5193(70)90109-8.
- Gilbert P. Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biology 1972; 36(1): 105-117. DOI: 10.1016/0022-5193(72)90180-4.
- Minerbo G. MENT: a maximum entropy algorithm for reconstructing a source from projection data. Comp Graph Image Process1979; 10(1): 48-68. DOI: 10.1016/0146-664X(79)90034-0.
- Andersen AH, Kak AC. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrasonic Imaging 1984; 6(1): 81-94. DOI: 10.1177/016173468400600107.
- Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. Journal of Computer Assisted Tomography 1984; 8(2): 306-316.
- Sauer K, Bouman C. A local update strategy for iterative reconstruction from projections. IEEE Transactions on Signal Processing 1993; 41(2): 534-548. DOI: 10.1109/78.193196.
- Manglos SH, Gagne GM, Krol A, Thomas FD, Narayanaswamy R. Transmission maximum-likelihood reconstruction with ordered subsets for cone beam CT. Physics in Medicine and Biology 1995; 40(7): 1225-1241. DOI: 10.1088/0031-9155/40/7/006.
- Bouman C, Sauer K. A unified approach to statistical tomography using coordinate descent optimization. IEEE Transactions on Image Processing 1996; 5(3): 480-492. DOI: 10.1109/83.491321.
- Nuyts J, DeMan B, Dupont P, Defrise M, Suetents P, Mortelmans L. Iterative reconstruction for helical CT: a simulation study. Physics in Medicine and Biology 1998; 43(4): 729-737. DOI: 10.1088/0031-9155/43/4/003.
- Erdogan H, Fessler JA. Ordered subsets algorithms for transmission tomography. Physics in Medicine and Biology 1999; 44(11): 2835-2851. DOI: 10.1088/0031-9155/44/11/311.
- Beekman FJ, Kamphuis C. Ordered subset reconstruction for X-ray CT. Physics in Medicine and Biology 2001; 46(7): 1835-1844. DOI: 10.1088/0031-9155/46/7/307.
- Badea C, Gordon R. Experiments with the nonlinear and chaotic behavior of the multiplicative algebraic reconstruction technique (MART) algorithm for computed tomography. Physics in Medicine and Biology 2004; 49(8): 1457-1474. DOI: 10.1088/0031-9155/49/8/006.
- Thibault J-B, Sauer KD, Bouman CA, Hsieh JA. Three-dimensional statistical approach to improved image quality for multislice helical CT. Medical Physics 2007; 34(11): 4526-4544. DOI: 10.1118/1.2789499.
- Yu Z, Thibault J-B, Bouman CA, Sauer KD, Hsieh J. Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE Transactions on Image Processing 2011; 20(1): 161-175. DOI: 10.1109/TIP.2010.2058811.
- Donoho DL. Compressed sensing. IEEE Transaction on Information Theory 2006; 52(4): 1289-1306. DOI: 10.1109/TIT.2006.871582.
- Candès EJ, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics 2006; 59(8): 1207-1223. DOI: 10.1002/cpa.20042.
- Candès EJ, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems 2007; 23(3): 969-985. DOI: 10.1088/0266-5611/23/3/008.
- Chang M, Li L, Chen Z, Xiao Y, Zhang L, Wang G. A few-view reweighted sparsity hunting (FRESH) method for CT image reconstruction. Journal of X-Ray Science and Technology 2013; 21(2): 161-176. DOI: 10.3233/XST-130370.
- Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2009; 2(1): 183-202. DOI: 10.1137/080716542.
- Sidky EY, Kao CM, Pan X. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. Journal of X-Ray Science and Technology 2006; 14(2): 119-139.
- Yu H, Wang G. Compressed sensing based interior tomography. Physics in Medicine and Biology 2009; 54(9): 2791-2805. DOI: 10.1088/0031-9155/54/9/014.
- Vengrinovich VL, Zolotarev SA. Iterative methods for tomography [In Russian]. Minsk: “Belaruskaya Navuka” Publisher; 2009. ISBN: 978-985-08-1042-7.
- Pickalov VV, Melnikova TS. Plasma tomography [In Russian]. Novosibirsk: “Nauka” Publisher; 1995. ISBN: 5-02-030372-0.
- Abir M, Islam F, Wachs D, Lee H-K. Sparse-view neutron CT reconstruction of irradiated fuel assembly using total variation minimization with Poisson statistics. Journal of Radioanalytical and Nuclear Chemistry2016; 307(3): 1967-1979. DOI: 10.1007/s10967-015-4542-2.
- Batenburg KJ, Bals S, Sijbers J, Kübel C, Midgley PA, Hernandez JC, Kaiser U, Encina ER, Coronado EA, VanTendeloo G. 3D imaging of nanomaterials by discrete tomography. Ultramicroscopy 2009; 109(6): 730-740. DOI: 10.1016/j.ultramic.2009.01.009.
- Pang TF. AWE multi-axis radiographic facility: a review of 3D-reconstructions from limited data. In Book: Mohammad-Djafari A, ed. Bayesian inference and maximum entropy methods in science and engineering. Gif-sur-Yvette: AIP Conference Proceedings; 2001: 568; 521-530.
- Konovalov AB, Mogilenskikh DV, Kozlov EA, Vlasov VV, Kiselev AN, Kovalev EV, Zakharov MN, Povyshev VN, Stavrietskii VI. Few-view gamma tomography used to monitor scabbing and shear fracture in a spherical iron shell compressed by explosion. Russian Journal of Nondestructive Testing 2008; 44(1): 15-24. DOI: 10.1134/S1061830908010026.
- Konovalov AB, Kiselev AN, Vlasov VV. Spatial resolution of few view computed tomography using algebraic reconstruction techniques. Patt Recogn Image Analys 2006; 16(2): 249-255. DOI: 10.1134/S105466180602012X.
- Konovalov AB, Vlasov VV, Kalintsev AG, Kravtsenyuk OV, Lyubimov VV. Time-domain diffuse optical tomography using analytic statistical characteristics of photon trajectories. Quantum Electronics 2006; 36(11): 1048-1055. DOI: 10.1070/QE2006v036n11ABEH013302.
- Konovalov AB, Mogilenskikh DV, Vlasov VV, Kiselev AN. Algebraic reconstruction and post-processing in incomplete data computed tomography: from X-rays to laser beams. In Book: Obinata G,
- Dutta A, ed. Vision systems: applications. Vienna: I-Tech Education and Publishing; 2007: 487-518. DOI: 10.5772/5003
- Konovalov AB, Vlasov VV, Mogilenskikh DV, Kravtsenyuk OV, Lyubimov VV. Algebraic reconstruction and post-processing in one-step diffuse optical tomography. Quantum Electronics 2008; 38(11): 588-596. DOI: 10.1070/QE2008v038n06ABEH013834.
- Vlasov VV, Konovalov AB, Uglov AS. An a priori information based algorithm for artifact preventive reconstruction in few-view computed tomography. Proceedings of ISCCSP 2012: 042. DOI: 10.1109/ISCCSP.2012.6217778.
- Konovalov AB, Vlasov VV. Spatial resolution analysis for few-views discrete tomography based on MART-AP algorithm. ISRN Signal Processing 2013; 2013: 356291. DOI: 10.1155/2013/356291.
- Vlasov VV, Konovalov AB, Uglov AS. Few-views image reconstruction with SMART and allowance for contrast structure shadows. In Book: Azzopardi G, Petkov N, eds. Computer Analysis of Images and Patterns. Cham: Springer; 2015: 667-677. DOI: 10.1007/978-3-319-23192-1_56.
- Vlasov VV, Konovalov AB, Kolchugin SV. Few-views algebraic reconstruction of images with TV-regularization and adaptive segmentation. In Book: Zababakhin scientific talks: Abstract. “FGUP RFYaC – VNIITF named after academician Zababakhin EI” Publisher; 2017: 295-296.
- Storath M, Weinmann A, Frikel J, Unser M. Joint image reconstruction and segmentation using the Potts model. Inverse Problems 2015; 31(2): 025003. DOI: 10.1088/0266-5611/31/2/025003.
- Weinmann A, Storath M. Iterative Potts and Blake-Zisserman minimization for the recovery of functions with discontinuities from indirect measurements. Proceedings of the Royal Society A 2015; 471(2176): 20140638. DOI: 10.1098/rspa.2014.0638.
- Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 1989; 42(5): 577-685. DOI: 10.1002/cpa.3160420503.
- Pottslab: Matlab/Java toolbox for the reconstruction of jump-sparse signals and images using Potts functionals. Source: <https://github.com/mstorath/Pottslab>.
- Mehnert A, Jackway O. An improved seeded region growing algorithm. Patt Recogn Lett 1997; 18(10): 1065-1071. DOI: 10.1016/S0167-8655(97)00131-1.
- Mazouzi S, Batouche M. Range image segmentation by randomized region growing and Bayesian edge regularized. J Comp Sci 2007; 3(5): 310-317. DOI: 10.3844/jcssp.2007.310.317.
- Alvare G, Gordon R. Foxels for high flux, high resolution computed tomography (FoxelCT) using broad x-ray focal spots: theory and two-dimensional fan beam examples. Radiology and Diagnostic Imaging 2017; 1(1): 1-40. DOI: 10.15761/RDI.1000103.
- Kaipio J, Somersalo E. Statistical inverse problems: discretization, model reduction and inverse crimes. Journal of Computational and Applied Mathematics 2007; 198(2): 493-504. DOI: 10.1016/j.cam.2005.09.027.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20