(44-3) 06 * << * >> * Russian * English * Content * All Issues
Algorithm for reconstructing complex coefficients of Laguerre–Gaussian modes from the intensity distribution of their coherent superposition
S.G. Volotovskiy 1, S.V. Karpeev 1,2, S.N. Khonina 1,2
1 IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
2 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
PDF, 1395 kB
DOI: 10.18287/2412-6179-CO-727
Pages: 352-362.
Full text of article: Russian language.
Abstract:
In this paper, we consider a problem of reconstructing complex coefficients of the coherent su-perposition of Laguerre–Gaussian modes from the field intensity in a plane perpendicular to the propagation axis at a given distance using the Levenberg–Marquardt and Brent algorithm. The efficiency of using stage-by-stage optimization to restore complex coefficients of a superposition is demonstrated not only on model, but also on experimental intensity distributions. The algorithm can be used in optical information transmission through a turbulent atmosphere to process the received intensity distribution of the optical signal.
Keywords:
optical information transmission, Laguerre–Gaussian modes, optimization of approximation by a modes’ superposition, reconstruction of complex coefficients, Levenberg–Marquardt algorithm, Brent algorithm.
Citation:
Volotovskiy SG, Karpeev SV, Khonina SN. Algorithm for reconstructing complex coefficients of Laguerre–Gaussian modes from the intensity distribution of their coherent superposition. Computer Optics 2020; 44(3): 352-362. DOI: 10.18287/2412-6179-CO-727.
Acknowledgements:
This work was partly funded by the Ministry of Science and Higher Education within the government project of FSRC “Crystallography and Photonics” RAS under agreement 007-GZ/Ch3363/26 (theoretical part) and the Russian Foundation for Basic Research under grant No. 18-29-20045-mk (numerical calculations).
References:
- Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory. J Opt Soc Am A 1987; 4(4): 651-654.
- McGloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemporary Physics 2005; 46(1): 15-28.
- Adams MJ. An introduction to optical waveguides. Chichster: John Wiley & Sons; 1981.
- Dienerowitz M, Mazilu M, Dholakia K. Optical manipulation of nanoparticles: a review. J Nanophoton 2008; 2(1): 021875. DOI: 10.1117/1.2992045.
- Ustinov AV, Niziev VG, Khonina SN, Karpeev SV. Local characteristics of paraxial Laguerre–Gaussian vortex beams with a zero total angular momentum. J Mod Opt 2019; 66(20): 1961-1972. DOI: 10.1080/09500340.2019.1686183.
- Ion JC. Laser processing of engineering materials: Principles, procedure and industrial applications. Oxford: Elsevier Butterworth-Heinemann; 2005.
- Cheng J, Liu C, Shang S, Liu D, Perrie W, Dearden G, Watkins K. A review of ultrafast laser materials micromachining. Opt Laser Technol 2013; 46: 88-102.
- Podlipnov VV, Ivliev NA, Khonina SN, Nesterenko DV, Loșmanschii C, Meshalkin A, Achimova E, Abaskin V. Nonlinear effects in photoinduced nanomovement of carbazole-based azo-polymers. Proc SPIE 2019; 11146: 111460P. DOI: 10.1117/12.2527431.
- Berdagué S, Facq P. Mode division multiplexing in optical fibers. Appl Opt 1982; 21(11): 1950-1955. DOI: 10.1364/AO.21.001950.
- Khonina SN, Porfirev AP, Karpeev SV. Recognition of polarization and phase states of light based on the interaction of nonuniformly polarized laser beams with singular phase structures. Opt Express 2019; 27(13): 18484-18492. DOI: 10.1364/OE.27.018484.
- Čelechovský R, Bouchal Z. Optical implementation of the vortex information channel. New J Phys 2007; 9(9): 328. DOI: 10.1088/1367-2630/9/9/328.
- Larkin AS, Pushkarev DV, Degtyarev SA, Khonina SN, Savel’ev AB. Generation of Hermite – Gaussian modes of high-power femtosecond laser radiation using binary-phase diffractive optical elements, Quantum Electron 2016; 46(8): 733-737. DOI: 10.1070/QEL16114.
- Busleev NI, Kudryashov SI, Danilov PA, Porfir’ev AP, Saraeva IN, Rudenko AA, Umanskaya SF, Zayarnyi DA, Ionin AA, Khonina SN. Symmetric nanostructuring and plasmonic excitation of gold nanostructures by femtosecond Laguerre – Gaussian laser beams. Quantum Electron 2019; 49(7): 666-671. DOI: 10.1070/QEL16888
- Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery MPJ, Padgett MJ, Boyd RW. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express 2012; 20(12): 13195-13200. DOI: 10.1364/OE.20.013195.
- Zhou Y, Yuan Y, Qu J, Huang W. Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov turbulence. Opt Express 2016; 24(10): 10682-10693. DOI: 10.1364/OE.24.010682.
- Cang J, Xiu P, Liu X. Propagation of Laguerre-Gaussian and Bessel-Gaussian Schell-model beams through paraxial optical systems in turbulent atmosphere. Opt Laser Technol 2013; 54(30): 35-41. DOI: 10.1016/j.optlastec.2013.05.002.
- Porfirev AP, Kirilenko MS, Khonina SN, Skidanov RV, Soifer VA. Study of propagation of vortex beams in aerosol optical medium. Appl Opt 2017; 56(11): E8-E15. DOI: 10.1364/AO.56.0000E8.
- Khonina SN, Kotlyar VV, Skidanov RV, Soifer VA, Laakkonen P, Turunen J, Wang Y., Experimental selection of spatial Gauss-Laguerre modes. Optical Memory and Neural Networks 2000; 9(1): 69-74.
- Jassemnejad B, Bohannan A, Lekki J, Weiland K. Mode sorter and detector based on photon orbital angular momentum. Opt Eng 2008; 47(5): 053001.
- Kaiser T, Flamm D, Schröter S, Duparré M. Complete modal decomposition for optical fibers using CGH-based correlation filters. Opt Express 2009; 17(11): 9347-9356.
- Berkhout GCG, Lavery MPJ, Courtial J, Beijersbergen MW, Padgett MJ. Efficient sorting of orbital angular momentum states of light. Phys Rev Lett 2010; 105: 153601.
- Wang Z, Zhang N, Yuan X. High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication. Opt Express 2011; 19: 482-492.
- Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340(6140): 1545-1548. DOI: 10.1126/science.1237861.
- Huang H, Milione G, Lavery MPJ, Xie G, Ren Y, Cao Y, Ahmed N, Nguyen TA, Nolan DA, Li M-J, Tur M, Alfano RR, Willner AE. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre. Sci Rep 2015; 5: 14931. DOI: 10.1038/srep14931.
- Khonina SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles. Opt Las Eng 2018; 105: 68-74. DOI: 10.1016/j.optlaseng.2018.01.006.
- Turnbull GA, Robertson DA, Smith GM, Allen L, Padgett MJ. The generation of free-space Laguerre–Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate. Opt Commun 1996; 127: 183-188.
- Kotlyar VV, Soifer VA, Khonina SN. Rotation of Gauss-Laguerre multimodal light beams in free space. Tech Phys Lett 1997; 23(9): 657-658.
- Khonina SN, Kotlyar VV, Soifer VA. Diffraction optical elements matched to the Gauss-Laguerre modes. Optics and Spectroscopy 1998; 85(4): 636-644.
- Khonina SN, Kotlyar VV, Skidanov RV, Soifer VA, Laakkonen P, Turunen J. Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element. Opt Commun 2000; 175(4-6): 301-308. DOI: 10.1016/S0030-4018(00)00472-7.
- Carpentier AV, Michinel H, José RS, et al. Making optical vortices with computergenerated holograms. Am J Phys 2008; 76(10): 916-921.
- Matsumoto N, Ando T, Inoue T, Ohtake Y, Fukuchi N, Hara T. Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. J Opt Soc Am A 2008; 25: 1642-1651.
- Li S, Wang Z. Generation of optical vortex based on computer-generated holographic gratings by photolithography. Appl Phys Lett 2013; 103(14): 141110.
- Berezny AE, Karpeev SV, Uspleniev GV. Computer-generated holographic optical elements produced by photolithography. Opt Lasers Eng 1991; 15(5): 331-340. DOI: 10.1016/0143-8166(91)90020-T.
- Golub MA, Karpeev SV, Krivoshlykov SG, Prokhorov AM, Sisakyan IN, Soifer VA. Spatial filter investigation of the distribution of power between transverse modes in a fiber waveguide. Sov J Quantum Electron 1984; 14(9): 1255-1256. – DOI: 10.1070/QE1984v014n09ABEH006201.
- Khonina SN, Almazov AA. Design of multi-channel phase spatial filter for selection of Gauss-Laguerre laser modes. Proc SPIE 2002; 4705: 30-39.
- Golub MA, Karpeev SV, Kazanskiĭ NL, Mirzov AV, Sisakyan IN, Soĭfer VA, Uvarov GV. Spatial phase filters matched to transverse modes. Sov J Quantum Electron 1988; 18(3): 392-393. DOI: 10.1070/QE1988v018n03ABEH011528.
- Leach J, Courtial J, Skeldon K, Barnett SM, Franke-Arnold S, Padgett MJ. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys Rev Lett 2004; 92: 013601.
- Berkhout GCG, Lavery MPJ, Padgett MJ, Beijersbergen MW. Measuring orbital angular momentum superpositions of light by mode transformation. Opt Lett 2011; 36: 1863-1865.
- Lavery MPJ, Berkhout GCG, Courtial J, Padgett MJ. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation. J Opt 2011; 13: 064006.
- D’errico A, D’amelio R, Piccirillo B, Cardano F, Marrucc L. Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams. Optica 2017; 4: 1350-1357. DOI: 10.1364/OPTICA.4.001350.
- Gu X, Krenn M, Erhard M, Zeilinger A. Gouy phase radial mode sorter for light: concepts and experiments. Phys Rev Lett 2018; 120: 103601.
- Fu D, Zhou Y, Qi R, Oliver S, Wang Y, Rafsanjani SM., Zhao J, Mirhosseini M, Shi Z, Zhang P, Boyd RW. Realization of a scalable Laguerre–Gaussian mode sorter based on a robust radial mode sorter. Opt Express 2018; 26(25): 33057-33065. DOI: 10.1364/OE.26.033057.
- Volyar A, Bretsko M, Akimova Ya, Egorov Yu. Measurement of the vortex spectrum in a vortex-beam array without cuts and gluing of the wavefront. Opt Lett 2018; 43(22): 5635-5638. DOI: 10.1364/OL.43.005635.
- Fontaine NK, Ryf R, Chen H, Neilson DT, Kim K, Carpenter J. Laguerre-Gaussian mode sorter. Nat Commun 2019; 10: 1865. DOI: 10.1038/s41467-019-09840-4.
- More JJ. The Levenberg-Marquardt algorithm: Implementation and theory. In Book: Watson GA, ed. Numerical analysis. New York: Springer-Verlag; 1978: 105-116.
- Brent RP. Algorithms for minimization without derivatives. Prentice-Hall; 1973.
- Kogelnik H, Li T. Laser beams and resonators. Appl Opt 1966; 5(10): 1550-1567.
- Siegman AE. Lasers. Universe Science Books; 1986: 642-652.
- Pavelyev VS, Khonina SN, Kotlyar VV, Soifer VA. Analysis of transverse modes of laser radiation. In Book: Soifer VA, ed. Computer design of diffractive optics. Ch 8. Cambridge: Woodhead Publishing and Cambridge International Science Publishing; 2012: 515-670.
- Pavelyev VS, Khonina SN. Fast iterative calculation of phase formers of Gauss-Laguerre modes. Computer Optics 1997; 17: 15-20.
- Hickson P. Wave-front curvature sensing from a single defocused image. J Opt Soc Am A 1994; 11(5): 1667-1673. DOI: 10.1364/JOSAA.11.001667.
- Tokovinin A, Heathcote S. DONUT: measuring optical aberrations from a single extrafocal image. Publ Astron Soc Pac 2006; 118(846): 1165-1175. DOI: 10.1086/506972.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20