(45-5) 17 * << * >> * Russian * English * Content * All Issues
Comparison of numerical integration methods for calculating diffraction of a plane electromagnetic wave by a rectangular aperture
A.S. Mokeev 1, V.M. Yamshchikov 1
1 Federal State Unitary Enterprise RUSSIAN FEDERAL NUCLEAR CENTER,
All-Russian Research Institute of Experimental Physics (FSUE "RFNC – VNIIEF"),
The Institute of Laser Physics (ILFI), 607188, Sarov, Nizhny Novgorod region, Mira Ave, 37
PDF, 889 kB
DOI: 10.18287/2412-6179-CO-877
Pages: 773-778.
Full text of article: Russian language.
Abstract:
We discuss features of the calculation of a Fraunhofer integral by traditional quadrature numerical integration methods and a special collocation Levin method when calculating the diffraction of a plane electromagnetic wave by a rectangular aperture. For the quadrature numerical integration methods, a criterion for the assessment of the integration step is derived depending on the screen size and required calculation accuracy. Advantages of the use of the special collocation Levin method in comparison with the traditional quadrature numerical integration methods are shown.
Keywords:
diffraction integral, integration of oscillatory functions, method of rectangles, trapezium method, Levin method, Fraunhofer diffraction.
Citation:
Mokeev AS, Yamschikov VM. Comparison of numerical integration methods for calculating diffraction of a plane electromagnetic wave diffraction on rectangular aperture. Computer Optics 2021; 45(5): 773-778. DOI: 10.18287/2412-6179-CO-877.
References:
- Akhmanov SA, Nikitin SYu. Physical optics. Oxford: Clarendon Press; 1997.
- Born M, Wolf E. Principles of optics. Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press, 1999.
- Ustinov AV. The fast way for calculation of first class Rayleigh-Sommerfeld integral [In Russian]. Computer Optics 2009; 33(4): 412-419.
- Veerman JAC. Calculation of the Rayleigh-Sommerfeld diffraction integral by exact integration of the fast oscillating factor. J Opt Soc Am 2005; 22(4): 636-646.
- Kalitkin NN. Numerical methods [In Russian]. Moscow: "Nauka" Publisher; 1986.
- Samarskii AA, Gulin AV. Numerical methods [In Russian]. Moscow: "Nauka" Publisher; 1989.
- Sobol IM. A primer for the Monte Carlo method. Boca Raton, FL: CRC Press; 1994.
- Jeffery GB. Louis Napoleon George Filon, 1875-1937. Obit Not Fell R Soc 1939; 2(7): 501-509. DOI: 10.1098/rsbm.1939.0010.
- Levin D. Procedures for computing one and two-dimensional integrals of functions with rapid irregular oscillations. Math Comp 1982, 38(158): 531-538.
- Li J, Wang X, Wang T. A universal solution to one-dimensional oscillatory integrals. Sci China Ser F-Inf Sci 2008; 51(10): 1614-1622. DOI: 10.1007/s11432-008-0121-2.
- Lovetskiy KP, Sevastyanov LA, Sevastyanov AL, Mekeko NM. Integration of highly oscillatory functions. Mathematical Modelling and Geometry 2014; 2(3): 11-27. DOI: 10.26456/mmg/2015-312.
- Liu Y. Fast evaluation of canonical oscillatory integrals. Appl Math Inf Sci 2012; 6(2): 245-251.
- Lovetskiy KP, Migal IA. Comparison of methods for calculation of oscillatory integrals [In Russian]. Naukovedenie 2015; 7(2). Source: <http://naukovedenie.ru/PDF/70TVN315.pdf>.
- Fikhtengol’ts GM. Differential- und Integralrechnung. II [In German]. Berlin: VEB Deutscher Verlag der Wissenschaften; 1978.
- Mason JC, Handscomb DC. Chebyshev polynomials. Chapman & Hall /CRC Press; 2002.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20