(46-6) 01 * << * >> * Russian * English * Content * All Issues

Can the radial number of vortex modes control the orbital angular momentum?
A.V. Volyar 1, E.G. Abramochkin 2, M.V. Bretsko 1, Ya.E. Akimova 1, Yu.A. Egorov 1

Physics and Technology Institute of V.I. Vernadsky Crimean Federal University,
295007, Simferopol, Republic of Crimea, Russia, Academician Vernadsky 4;
Lebedev Physical Institute, 443034, Samara, Russia, Novo-Sadovaya 221

 PDF, 1817 kB

DOI: 10.18287/2412-6179-CO-1169

Pages: 853-863.

Full text of article: Russian language.

Abstract:
In general, a standard Laguerre–Gauss (LG) beam, whose state is given by two quantum numbers (n, 𝓁): the radial number n and the azimuthal number 𝓁 (or the topological charge (TС) of the vortex carried by the LG beam), is unstable with respect to weak perturbations. This is not difficult to see if we decompose the complex amplitude of the LG beam in terms of Hermite–Gauss modes (HG), with the total number of HG modes being equal to N = 2n +𝓁 + 1. If we now slightly change the amplitudes and phases of each HG mode, then the structure of the LG beam radically changes. Such a combination of modes is called a structured LG beam (sLG), which can carry large additional arrays of information embedded in the sLG beam by encoding the amplitudes and phases of the HG modes (excitation of modes). But as soon as a perturbation is inserted into the LG beam, its orbital angular momentum (OAM) can change dramatically in such a way that the value of the OAM changes in the interval (–𝓁, 𝓁), and the total TC – in the interval (–2n – 𝓁, 2n + 𝓁). At n = 0, the OAM changes smoothly in the interval (–𝓁, 𝓁), however it is worth "turning on" the radial number n, as the OAM oscillations occur. The number of minima (maxima) of the oscillations is equal to the radial number n in the interval θ = (0, π) and θ = (π, 2π), with their amplitude nonlinearly depending on the difference 𝓁 – n, except for the point θ = π, where the structured beam becomes degenerate. If 𝓁 = 0, then the OAM is zero, so that in the sLG beam structure, we observe either a symmetrical array of vortices with opposite-sign TCs or a pattern of edge dislocations, the number of which is equal to the radial number n. We also found that, despite the fast oscillations of the OAM, the absolute value of the total TC of the sLG beam does not change with variation of both the amplitude ε and phase θ parameters, but depends solely on the initial state (n, 𝓁) of the LG beam and modulo (2n + 𝓁).

Keywords:
structural stability, topological charge, orbital angular momentum, vortex spectrum.

Citation:
Volyar AV, Abramochkin EG, Bretsko MV, Akimova YaE, Egorov YuA. Can the radial number of vortex modes control the orbital angular momentum? Computer Optics 2022; 46(6): 853-863. DOI: 10.18287/2412-6179-CO-1169.

Acknowledgements:
The work was partly funded by the Russian Foundation for Basic Research under grants No. 20-37-90066 (Section "Two-parametric excitation of HG modes in a structured LG beam"), No. 20-37-90068 (Section "Complex amplitude of a structured LG beam"), and No. 19-29-01233 (Section "Fast OAM oscillations"), as well as a grant from the State Council of the Republic of Crimea (Section "Topological invariants of sLG sheaves and their measurement").

References:

  1. Allen L, Beijersbergen MW, Spreew RJC, Woerdman JP. Orbital angular momentum and the transformation of Gauss-Laguerre modes. Phys Rev A 1992; 45(11): 8185-8189. DOI: 10.1103/PhysRevA.45.8185.
  2. Berry MV. Paraxial beams of spinning light. Proc SPIE 1998; 3487: 6-11. DOI: 10.1117/12.317704.
  3. Van Enk SJ, Nienhuis G. Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields. J Mod Opt 1994; 41(5): 963-977. DOI: 10.1080/09500349414550911.
  4. Fadeyeva TA, Rubass AF, Aleksandrov RV, Volyar AV. Does the optical angular momentum change smoothly in fractional-charged vortex beams? J Opt Soc Am B 2014; 31(4): 798-805. DOI: 10.1364/JOSAB.31.000798.
  5. Kotlyar VV, Kovalev AA. Vortex-free laser beam with an orbital angular momentum. Computer Optics 2017; 41(4): 573-576. DOI: 10.18287/2412-6179-2017-41-4-573-576.
  6. Izdebskaya YV, Shvedov VG, Volyar AV. Symmetric array of off-axis singular beams: spiral beams and their critical points. J Opt Soc Am A 2008; 25(1): 171-181. DOI: 10.1364/JOSAA.25.000171.
  7. Aksenov VP, Dudorov VV, Filimonov GA, Kolosov VV, Venediktov VYu. Vortex beams with zero orbital angular momentum and non-zero topological charge. Opt Laser Technol 2018; 104: 159-163. DOI: 10.1016/j.optlastec.2018.02.022.
  8. Kovalev AA, Kotlyar VV, Porfirev AP. Asymmetric Laguerre-Gaussian beams. Phys Rev A 2016; 93(6): 063858. DOI: 10.1103/PhysRevA.93.063858.
  9. Najafi-Nezhad F, Azizian-Kalandaragh Y, Akhlaghi EA, Amiri P, Porfirev A, Khonina S, Najarbashi G. Superposition of shifted Laguerre–Gaussian beams. Optik 2021; 227: 165147. DOI: 10.1016/j.ijleo.2020.165147.
  10. Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 2021; 15: 253-262. DOI: 10.1038/s41566-021-00780-4.
  11. Shen Y, Yang X, Naidoo D, Fu X, Forbes A. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica 2020; 7(7): 820-831. DOI: 10.1364/OPTICA.382994.
  12. Kotlyar VV, Kovalev AA. Orbital angular momentum of paraxial propagation-invariant laser beams. J Opt Soc Am A 2022; 39(6): 1061-1065. DOI: 10.1364/JOSAA.457660.
  13. Volyar A, Abramochkin E, Egorov Yu, Bretsko M, Akimova Y. Fine structure of perturbed Laguerre–Gaussian beams: Hermite–Gaussian mode spectra and topological charge. Appl Opt 2020; 59(25): 7680-7687. DOI: 10.1364/AO.396557.
  14. Abramochkin EG, Volostnikov VG. The modern optics of the Gaussian beams [In Russian]. Мoscow: “Fizmatlit” Publisher; 2010. ISBN: 978-5-9221-1216-1.
  15. Berry MV. Wave dislocations in non-paraxial Gaussian beams. J Mod Opt 1998; 45(9): 1845-1858. DOI: 10.1080/09500349808231706.
  16. Volyar AV, Shvedov VG, Fadeeva TA. The structure of a nonparaxial Gaussian beam near the focus: II. Optical vortices. Optics and Spectroscopy 2001; 90: 93-100. DOI: 10.1134/1.1343551.
  17. Szegö G. Orthogonal polynomials [In Russian]. Moscow: “Fizmatgiz” Publisher; 1962.
  18. Kotlyar VV, Kovalev AA, Volyar AV. Topological charge of a linear combination of optical vortices: topological competition. Opt Express 2020; 28(6): 8266-8281. DOI: 10.1364/OE.386401.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20