(46-6) 02 * << * >> * Russian * English * Content * All Issues

Topological charge of superposition of optical vortices described by a geometric sequence
V.V. Kotlyar 1,2, A.A. Kovalev 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1410 kB

DOI: 10.18287/2412-6179-CO-1152

Pages: 864-871.

Full text of article: Russian language.

Abstract:
Here, we investigate coaxial superpositions of Gaussian optical vortices that can be described by a geometric sequence. For all superpositions analyzed, a topological charge (TC) is derived. In the initial plane, the TC can be either integer or half-integer, acquiring an integer value upon free-space propagation of the light field. Generally, the geometric sequence of optical vortices (GSOV) has three integer parameters and one real parameter. Values of these four parameters define the TC of the GSOV. Upon free-space propagation, the intensity pattern of the GSOV is not conserved, but can have intensity petals whose number is equal to one of the four beam parameters. If the GSOV has a unit real parameter, all constituent angular harmonics in the superposition have the same weight. In this case, the TC of the superposition is equal to the average index of the constituent angular harmonics. For instance, if the TC of the first and of the last angular harmonics, respectively, equals k and n, then the total TC of the superposition in the initial plane will be (n + k) /2, becoming equal to n upon free-space propagation.

Keywords:
optical vortex, superposition, geometric sequence, topological charge.

Citation:
Kotlyar VV, Kovalev AA. Topological charge of a superposition of optical vortices described by a geometric sequence. Computer Optics 2022; 46(6): 864-871. DOI: 10.18287/2412-6179-CO-1152.

Acknowledgements:
The work was funded by the Russian Science Foundation grant 22-12-00137 (theory), as well as by the Ministry of Science and Higher Education of the Russian Federation within the government project of the FSRC “Crystallography and Photonics” RAS (simulation).

References:

  1. Chen J, Wan C, Chong A, Zhan Q. Experimental demonstration of cylindrical vector spatiotemporal optical vortex. Nanophotonics 2021; 10(18): 4489-4495. DOI: 10.1515/nanoph-2021-0427.
  2. Long J, Hou T, Chang Q, Yu T, Su R, Ma P, Ma Y, Zhou P, Si L. Generation of optical vortex lattices by a coherent beam combining system. Opt Lett 2021; 46(15): 3665-3668. DOI: 10.1364/OL.425186.
  3. Ikonnikov DA, Myslivets SA, Arkhipkin VG, Vyunishev AM. 3D optical vortex lattices. Ann Phys 2021; 533(7): 2100114. DOI: 10.1002/andp.202100114.
  4. Yang Y, Ren Y-X, Chen M, Arita Y, Rosales-Guzmán C. Optical trapping with structured light: a review. Adv Photon 2021; 3(3): 034001. DOI: 10.1117/1.AP.3.3.034001.
  5. Li C, Maier SA, Ren H. Optical vortices in nanophotonics. Chinese Optics 2021; 14(4): 792-811. DOI: 10.37188/CO.2021-0066.
  6. Pryamikov A, Hadzievski L, Fedoruk M, Turitsyn S, Aceves A. Optical vortices in waveguides with discrete and continuous rotational symmetry. J Eur Opt Soc 2021; 17: 23. DOI: 10.1186/s41476-021-00168-5.
  7. Volyar AV, Abramochkin EG, Akimova YE, Bretsko MV. Reconstruction of stable states of spiral vortex beams. Computer Optics 2022; 46(1): 5-15. DOI: 10.18287/2412-6179-CO-1032.
  8. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys Rev A 1992; 45(11): 8185-8189. DOI: 10.1103/PhysRevA.45.8185.
  9. Durnin J, Miceli JJ Jr, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987; 58(15): 1499-1501. DOI: 10.1103/PhysRevLett.58.1499.
  10. Gori F, Guattari G, Padovani C. Bessel-Gauss beams. Opt Commun 1987; 64(6): 491-495. DOI: 10.1016/0030-4018(87)90276-8.
  11. Kotlyar VV, Almazov AA, Khonina SN, Soifer VA, Elfstrom H, Turunen J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J Opt Soc Am A 2005; 22(5): 849-861. DOI: 10.1364/JOSAA.22.000849.
  12. Kotlyar VV, Skidanov RV, Khonina SN, Soifer VA. Hypergeometric modes. Opt Lett 2007; 32(7): 742-744. DOI: 10.1364/OL.32.000742.
  13. Karimi E, Zito G, Piccirillo B, Marrucci L, Santamato E. Hypergeometric-Gaussian modes. Opt Lett 2007; 32(21): 3053-3055. DOI: 10.1364/OL.32.003053.
  14. Bandres MA, Gutiérrez-Vega JC. Circular beams. Opt Lett 2008; 33(2): 177-179. DOI: 10.1364/OL.33.000177.
  15. Bandres MA, Gutiérrez-Vega JC. Elliptical beams. Opt Express 2008; 16(25): 21087-21092. DOI: 10.1364/OE.16.021087.
  16. Kotlyar VV, Kovalev AA, Soifer VA. Asymmetric Bessel modes. Opt Lett 2014; 39(8): 2395-2698. DOI: 10.1364/OL.39.002395.
  17. Abramochkin EG, Volostnikov VG. Generalized Gaussian beams. J Opt A: Pure Appl Opt 2004; 6: S157-S161. DOI: 10.1088/1464-4258/6/5/001.
  18. Kotlyar VV, Kovalev AA, Volyar AV. Topological charge of a linear combination of optical vortices: topological competition. Opt Express 2020; 28(6): 8266-8281. DOI: 10.1364/OE.386401.
  19. Nalimov AG, Kotlyar VV. Topological charge of optical vortices in the far field with an initial fractional charge: optical "dipoles". Computer Optics 2022; 46(2): 189-195. DOI: 10.18287/2412-6179-CO-1073.
  20. Kotlyar VV, Kovalev AA. Optical vortex beams with a symmetric and almost symmetric OAM spectrum. J Opt Soc Am A 2021; 38(9): 1276-1283. DOI: 10.1364/JOSAA.432623.
  21. Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A: Pure Appl Opt 2004; 6(2): 259-268. DOI: 10.1088/1464-4258/6/2/018.
  22. Gbur G. Fractional vortex Hilbert's hotel. Optica 2016; 3(3): 222-225. DOI: 10.1364/OPTICA.3.000222.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20