(47-1) 01 * << * >> * Russian * English * Content * All Issues

Sharp focusing of on-axis superposition of a high-order cylindrical vector beam and a beam with linear polarization
V.V. Kotlyar 1,2, S.S. Stafeev 1,2, V.D. Zaitsev 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 992 kB

DOI: 10.18287/2412-6179-CO-1165

Pages: 5-15.

Full text of article: Russian language.

Abstract:
In this work, the sharp focusing of a laser beam whose initial polarization pattern is formed by superposition of a cylindrical mth-order vector beam and a homogeneous linearly polarized beam is considered theoretically and numerically. Although in the source plane of such a beam both the angular spin momentum and the third Stokes parameter are equal to zero, we reveal that given odd m, subwavelength local regions are formed in the focal plane, where transverse vortex energy flows occur and the third Stokes parameter (the on-axis component of the angular spin momentum) is non-zero. Thus, at odd m, at the focus of such a beam there are – sub-regions with elliptical polarization of light with alternating handedness in the adjacent sub-regions (clockwise and counterclockwise). This phenomenon can be interpreted as a variant of an optical Hall effect. We note that at even m, the field at the focus is linearly polarized at every point and no transverse energy flow is observed.

Keywords:
linear and circular polarization, sharp focusing, Richards-Wolf formulas, Stokes vector, spin angular momentum.

Citation:
Kotlyar VV, Stafeev SS, Zaitsev VD. Sharp focusing of on-axis superposition of a high-order cylindrical vector beam and a beam with linear polarization. Computer Optics 2023; 47(1): 5-15. DOI: 10.18287/2412-6179-CO-1165.

Acknowledgements:
This work was funded by the Russian Science Foundation under project No. 22-22-00265 (Section “Theory”) and the RF Ministry of Science and Higher Education within a government project of the FSRC “Crystallography and Photonics” RAS (Section “Numerical simulation”).

References:

  1. Golovashkin DL, Kazanskiy NL. Mesh domain decomposition in the fnite-difference solution of Maxwell's equations. Optical Memory & Neural Networks (Information Optics) 2009; 18(3): 203-211. DOI: 10.3103/S1060992X09030102.
  2. Zhan Q, Leger JR. Focus shaping using cylindrical vector beams. Opt Express 2002; 10(7): 324-331.
  3. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1(1): 1-57.
  4. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S. Efficient extracavity generation of radially and azimuthally polarized beams. Opt Lett 2007; 32(11): 1468.
  5. Liu Z, Liu Y, Ke Y, Liu Y, Shu W, Luo H. Generation of arbitrary vector vortex beams on hybrid-order Poincare sphere. Photonic Res 2017; 5(1): 15-21.
  6. Liu J, Chen X, He Y, Lu L, Ye H, Chai G, Chen S, Fan D. Generation of arbitrary cylindrical vector vortex beams with cross-polarized modulation. Results Phys 2020; 19: 103455.
  7. Yan S, Yao B. Radiation forces of a highly focused radially polarized beam on spherical particles. Phys Rev A 2007; 76(5): 053836.
  8. Chen R, Agarwal K, Sheppard CJ, Chen X. Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system. Opt Lett 2013; 38(16): 3111-3114.
  9. Fickler R, Lapkiewicz R, Ramelow S, Zeilinger A. Quantum entanglement of complex photon polarization patterns in vector beams. Phys Rev A 2014; 89(6): 4172-4183.
  10. Hollezek A, Aiello A, Gabriel C, Morquargt C, Leuchs G. Classical and quantum properties of cylindrically polarized states of light. Opt Express 2011; 19(10): 9714-9736.
  11. Stafeev SS, Nalimov AG, Zaitsev VD, Kotlyar VV. Tight focusing cylindrical vector beams with fractional order. J Opt Soc Am B 2021; 38(4): 1090-1096. DOI: 10.1364/JOSAB.413581.
  12. Kotlyar VV, Nalimov AG, Stafeev SS. Exploiting the circular polarization of light to obtain a spiral energy flow at the subwavelength focus. J Opt Soc Am B 2019; 36(10): 2850-2855. DOI: 10.1364/JOSAB.36.002850.
  13. Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc Math Phys Eng Sci 1959; 253: 358-379. DOI: 10.1098/rspa.1959.0200.
  14. Kotlyar VV, Kovalev AA, Zaitsev VD. Topological charge of light fields with a polarization singularity. Photonics 2022; 9(5): 298. DOI: 10.3390/photonics9050298.
  15. Freund I. Polarization singularity indices in Gaussian laser beams. Opt Commun 2002; 201(4-6): 251-270.
  16. Kolyar VV, Stafeev SS, Kovalev AA. Sharp focusing of a light field with polarization and phase singularities of an arbitrary order. Computer Optics 2019; 43: 337-346. DOI: 10.18287/2412-6179-2019-43-3-337-346.
  17. Bliokh KY, Ostrovskaya EA, Alonso MA, Rodriguez-Herrera OG, Lara D, Dainty C. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt Express 2011; 19(27): 26132-26149.
  18. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Cambridge: Cambridge University Press; 1999.
  19. Pereira SF. Van de Nes AS. Superresolution by means of polarisation, phase and amplitude pupil masks. Opt Commun 2004; 234(1-6): 119-124. DOI: 10.1016/j.optcom.2004.02.020.
  20. Khonina SN, Volotovsky SG. Control by contribution of components of vector electric field in focus of a high-aperture lens by means of binary phase structures. Computer Optics 2010; 34(1): 58-68.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20