(47-1) 02 * << * >> * Russian * English * Content * All Issues

Modeling of spontaneous emission in presence of cylindrical nanoobjects: the scattering matrix approach
V.V. Nikolaev 1, E.I. Girshova 1, M.A. Kaliteevski 2

Submicron Heterostructures for Microelectronics Research
and Engineering Center of the Russian Academy of Science,
194021 St Petersburg, Russia, Politekhnicheskaya, 26;
ITMO University, 197101, St. Petersburg, Russia, Kronverksky Pr., 49

 PDF, 831 kB

DOI: 10.18287/2412-6179-CO-1143

Pages: 16-26.

Full text of article: English language.

Abstract:
We propose a method of analysis of spontaneous emission of a quantum emitter (an atom, a luminescence center, a quantum dot) inside or in vicinity of a cylinder. At the focus of our method are analytical expressions for the scattering matrix of the cylindrical nanoobject. We propose the approach to electromagnetic field quantization based of eigenvalues and eigenvectors of the scattering matrix. The method is applicable for calculation and analysis of spontaneous emission rates and angular dependences of radiation for a set of different systems: semiconductor nanowires with quantum dots, plasmonic nanowires, cylindrical hollows in dielectrics and metals. Relative simplicity of the method allows obtaining analytical and semi-analytical expressions for both cases of radiation into external medium and into guided modes.

Keywords:
spontaneous emission, scattering matrix, cylindrical symmetry.

Citation:
Nikolaev VV, Girshova EI, Kaliteevski MA. Modeling of spontaneous emission in presence of cylindrical nanoobjects: the scattering matrix approach. Computer Optics 2023; 47(1): 16-26. DOI: 10.18287/2412-6179-CO-1143.

Acknowledgements:
The work has been supported by the Russian Science Foundation 21-12-00304.

References:

  1. Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys 2015; 87(2): 347. DOI: 10.1103/RevModPhys.87.347.
  2. Senellart P, Solomon G, White, A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol 2017; 12(11): 1026-1039. DOI: 10.1038/nnano.2017.218.
  3. Friedler I, Sauvan C, Hugonin JP, Lalanne P, Claudon J, Gérard JM. Solid-state single photon sources: the nanowire antenna. Opt Express 2009; 17(4): 2095-2110. DOI: 10.1364/OE.17.002095.
  4. Cihan AF, Curto AG, Raza S, et al. Silicon Mie resonators for highly directional light emission from monolayer MoS2. Nat Photonics 2018; 12(5): 284-290. DOI: 10.1038/s41566-018-0155-y.
  5. Yan R, Gargas D, Yang P. Nanowire photonics. Nat Photonics 2009; 3(10): 569-576. DOI: 10.1038/nphoton.2009.184.
  6. Claudon J, Gregersen N, Lalanne P, Gérard J-M. Harnessing light with photonic nanowires: Fundamentals and applications to quantum optics. ChemPhysChem 2013; 14(11): 2393-2402. DOI: 10.1002/cphc.201300033.
  7. Claudon J, Bleuse J, Malik N, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat Photonics 2010; 4(3): 174-177. DOI: 10.1038/nphoton.2009.287x.
  8. Bleuse J, Claudon, J, Creasey M, Malik NS, Gérard J-M, Maksymov I, Hugonin J-P, Lalanne P. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys Rev Lett 2011; 106: 103601. DOI: 10.1103/PhysRevLett.106.103601.
  9. Paniagua-Domínguez R, Grzela G, Rivas JG, Sánchez-Gil JA. Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes. Nanoscale 2013; 5(21): 10582. DOI: 10.1039/c3nr03001f.
  10. Takahara J, Yamagishi S, Taki H, Morimoto A, Kobayashi T. Guiding of a one-dimensional optical beam with nanometer diameter. Opt Lett 1997; 22(7): 475-477. DOI: 10.1364/OL.22.000475.
  11. Leandro L, Gunnarsson CP, Reznik R, Jöns KD, Shtrom I, Khrebtov A, Kasama T, Zwiller V, Cirlin G, Akopian N. Nanowire quantum dots tuned to atomic resonances. Nano Lett 2018; 18(11): 7217-7221. DOI: 10.1021/acs.nanolett.8b03363.
  12. Reznik RR, Cirlin GE, Kotlyar KP, Ilkiv IV, Akopian N, Leandro L, Nikolaev VV, Belonovski AV, Kaliteevski MA. Purcell effect and beaming of emission in hybrid AlGaAs nanowires with GaAs quantum dots. Nanomaterials 2021; 11: 2894. DOI: 10.3390/nano11112894.
  13. Bulgarini G, Reimer ME, Bavinck MB, Jöns KD, Dalacu D, Poole PJ, Bakkers EPAM, Zwiller V. Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. Nano Lett 2014; 14(7): 4102-4106. DOI: 10.1021/nl501648f.
  14. Bulgarini G, Reimer ME, Zehender T, Hocevar M, Bakkers EPAM, Kouwenhoven LP, Zwiller V. Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides. Appl Phys Lett 2012; 100: 121106. DOI: 10.1063/1.3694935.
  15. Jeannin M, Cremel T, Häyrynen T, Gregersen N, Bellet-Amalric E, Nogues G, Kheng K. Enhanced photon extraction from a nanowire quantum dot using a bottom-up photonic shell. Phys Rev Appl 2017; 8: 054022. DOI: 10.1103/PhysRevApplied.8.054022.
  16. Haffouz S, Zeuner KD, Dalacu D, Poole PJ, Lapointe J, Poitras D, Mnaymneh K, Wu X, Couillard M, Korkusinski M, Schöll E, Jöns KD, Zwiller V, Williams RL. Bright single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: The role of the photonic waveguide. Nano Lett 2018; 18(5): 3047-3052. DOI: 10.1021/acs.nanolett.8b00550.
  17. Jaffal A, Redjem W, Regreny P, Nguyen HS, Cueff S, Letartre X, Patriarche G, Rousseau E, Cassabois G, Gendry M, Chauvin N. InAs quantum dot in a needlelike tapered InP nanowire: a telecom band single photon source monolithically grown on silicon. Nanoscale 2019; 11: 21847-21855. DOI: 10.1039/C9NR06114B.
  18. Katsenelenbaum BZ. Symmetric and non-symmetric excitation of an infinite dielectric cylinder [In Russian]. Zhurnal Tekhnicheskoi Fiziki 1949; 19(10): 1168-1181.
  19. Yip GL. Launching efficiency of the HE11 surface wave mode on a dielectric rod. IEEE Trans Microw Theory Tech 1070; 18(12): 1033-1041. DOI: 10.1109/TMTT.1970.1127408.
  20. Chu DY, Ho S-T. Spontaneous emission from excitons in cylindrical dielectric waveguides and the spontaneous-emission factor of microcavity ring lasers. J Opt Soc Am B 1993; 10: 381-390. DOI: 10.1364/JOSAB.10.000381.
  21. Nha H, Jhe W. Cavity quantum electrodynamics for a cylinder: Inside a hollow dielectric and near a solid dielectric cylinder. Phys Rev A 1997; 56: 2213. DOI: 10.1103/PhysRevA.56.2213.
  22. Żakowicz W, Janowicz M. Spontaneous emission in the presence of a dielectric cylinder. Phys Rev A 2000; 62: 013820. DOI: 10.1103/PhysRevA.62.013820.
  23. Søndergaard T, Tromborg B. General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier. Phys Rev A 2001; 64: 033812. DOI: 10.1103/PhysRevA.64.033812.
  24. Klimov VV, Ducloy M. Spontaneous emission rate of an excited atom placed near a nanofiber. Phys Rev A 2004; 69: 013812. DOI: 10.1103/PhysRevA.69.013812.
  25. Kien FL, Liang JQ, Hakuta K, Balykin VI. Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber. Opt Commun 2004; 242(4-6): 445-455. DOI: 10.1016/j.optcom.2004.08.044.
  26. Maslov, A. V. Bakunov, M. I. and Ning. C. Z. Distribution of optical emission between guided modes and free space in a semiconductor nanowire. J Appl Phys 2006; 99: 024314. DOI: 10.1063/1.2164538.
  27. Henderson MR, Afshar V S, Greentree AD, Monro TM. Dipole emitters in fiber: interface effects, collection efficiency and optimization. Opt Express 2011; 19: 16182-16194. DOI: 10.1364/OE.19.016182.
  28. Nikolaev VV, Ivanov KA, Morozov KM, Belonovski AV. Scattering matrix method for calculating spontaneous emission probability in cylindrically symmetrical structures. Semiconductors 2020; 54: 765-773. DOI: 10.1134/S1063782620070106.
  29. Abujetas DR, Paniagua-Domínguez R, Sánchez-Gil JA. Unraveling the Janus role of Mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting. ACS Photonics 2015; 2(7): 921-929. DOI: 10.1021/acsphotonics.5b00112.
  30. van Dam D, Abujetas DR, Paniagua-Domínguez R, Sánchez-Gil JA, Bakkers EPAM, Haverkort JEM, Rivas JG. Directional and polarized emission from nanowire arrays. Nano Lett 2015; 15(7): 4557-4563. DOI: 10.1021/acs.nanolett.5b01135.
  31. Ruda HE, Shik A. Polarization-sensitive optical phenomena in semiconducting and metallic nanowires. Phys Rev B 2005; 72: 115308. DOI: 10.1103/PhysRevB.72.115308.
  32. Arruda TJ, Bachelard R, Weiner J, Courteille PW. Tunable Fano resonances in the decay rates of a pointlike emitter near a graphene-coated nanowire. Phys Rev B 2018; 98: 245419. DOI: 10.1103/PhysRevB.98.245419.
  33. Barker AS, Ilegems M. Infrared lattice vibrations and free-electron dispersion in GaN. Phys Rev B 1973; 7: 743-750. DOI: 10.1103/PhysRevB.7.743.
  34. Deshpande S, Frost T, Yan L, Jahangir S, Hazari A, Liu X, Mirecki-Millunchick J, Mi Z, Bhattacharya P. Formation and nature of InGaN quantum dots in GaN nanowires, Nano Lett 2015; 15(3): 1647-1653. DOI: 10.1021/nl5041989.
  35. Vahala K. Optical microcavities. Nature 2003; 424: 839-846. DOI: 10.1038/nature01939.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20