(48-2) 05 * << * >> * Russian * English * Content * All Issues

Propagation of optical vortices in an add-drop resonator based on a vertical array of ring resonators
B.P. Lapin 1, E.V. Barshak 1, M.A. Yavorsky 1, C.N. Alexeyev 1

Physics and Technology Institute of V.I. Vernadsky Crimean Federal University,
295007, Simferopol, Republic of Crimea, Russia, Academician Vernadsky 4

 PDF, 1328 kB

DOI: 10.18287/2412-6179-CO-1392

Pages: 197-203.

Full text of article: Russian language.

Abstract:
In this paper we study the transmission of higher-order modes, including optical vortices (OVs), through a bus fiber evanescently coupled with a vertical array of ring resonators (VAR), which form a vertically stacked multi-ring resonator. It is shown that the OV transmission curves have a characteristic structure that we explain by the manifestation of the band structure of an infinite stack of coupled ring resonators. We demonstrate a fundamental possibility of using VARs as elements of delay lines for fiber-optic communications using orbital angular momentum. It is shown that the VAR is capable of serving as a delay line element for even and odd Laguerre–Gauss modes.

Keywords:
optical fiber, torsional mechanical stresses, dispersion, optical vortex.

Citation:
Lapin BP, Barshak EV, Yavorsky MA, Alexeyev CN. Propagation of optical vortices in an add-drop resonator based on a vertical array of ring resonators. Computer Optics 2024; 48(2): 197-203. DOI: 10.18287/2412-6179-CO-1392.

Acknowledgements:
This work was financially supported by the Russian Science Foundation under project No. 23-22-00425.

References:

  1. Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 2019; 8:90. DOI: 10.1038/s41377-019-0194-2.
  2. Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 2021; 15: 253-262 DOI: 10.1038/s41566-021-00780-4.
  3. Weng Y, Pan Z. Orbital angular momentum based sensing and their applications: A review. J Lightw Technol 2023; 41: 2007-2016. DOI: 10.1109/JLT.2022.3202184.
  4. Yang Y, Ren Y, Chen M, Arita Y, Rosales-Guzmán C. Optical trapping with structured light: a review. Adv Photon 2021; 3: 034001. DOI: 10.1117/1.AP.3.3.034001.
  5. Bobkova V, Stegemann J, Droop R, Otte E, Denz C. Optical grinder: sorting of trapped particles by orbital angular momentum. Opt Express 2021; 29: 12967-12975. DOI: 10.1364/OE.419876.
  6. Nakamura R, Kawaguchi H, Iwata M, Kaneko A, Nagura R, Kawano S, Toyoda K, Miyamoto K, Omatsu T. Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex. Opt Express 2019; 27: 38019-38027. DOI: 10.1364/OE.382288.
  7. Zeng J, Dong Y, Wang Y, Zhang J, Wang J. Optical imaging using orbital angular momentum: Interferometry, holography and microscopy. J Lightw Technol 2023; 41: 2025-2040. DOI: 10.1109/JLT.2022.3225214.
  8. Xu Y, Sun J, Walasik W, Litchinitser NM. Probing metamaterials with structured light. Opt Express 2016; 24: 26249-26254. DOI: 10.1364/OE.24.026249.
  9. Engay E, Rodrigo PJ. Nonlinear optical vortex coronagraph. Opt Lett 2020; 45: 1579-1582. DOI: 10.1364/OL.383311.
  10. Echeverri D, Ruane G, Jovanovic N, Mawet D, Levraud N. Vortex fiber nulling for exoplanet observations. I. Experimental demonstration in monochromatic light. Opt Lett 2019; 44: 2204-2207. DOI: 10.1364/OL.44.002204.
  11. Aleksanyan A, Kravets N, Brasselet E. Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve. Phys Rev Lett 2017; 118: 203902. DOI: 10.1103/PhysRevLett.118.203902.
  12. Willner AE, Song H, Zou K, Zhou H, Su X. Orbital angular momentum beams for high-capacity communications. J Lightw Technol 2023; 41: 1918-1933. DOI: 10.1109/JLT.2022.3230585.
  13. Wang J. Advances in communications using optical vortices. Photonics Res 2016; 4: B14-B28. DOI: 10.1364/PRJ.4.000B14.
  14. Wang J, Zhang X. Orbital angular momentum in fibers. J Lightw Technol 2023; 41: 1934-1962. DOI: 10.1109/JLT.2022.3229172.
  15. Caspar C, Bachus E-J. Fibre-optic micro-ring-resonator with 2 mm diameter. Electron Lett 1989; 25: 1506-1508. DOI: 10.1049/el:19891011.
  16. Sumetsky M. Optimization of optical ring resonator devices for sensing applications. Opt Lett 2007; 32: 2577-2579. DOI: 10.1364/OL.32.002577.
  17. Kazanskiy NL, Khonina SN, Butt MA. A review of photonic sensors based on ring resonator structures: Three widely used platforms and implications of sensing applications. Micromachines 2023; 14: 1080. DOI: 10.3390/mi14051080.
  18. Yang H, Li J, Hu G, Yun B, Cui Y. Hundred megahertz microwave photonic filter based on a high Q silicon nitride multimode microring resonator. OSA Continuum 2020; 3: 1445-1455. DOI: 10.1364/OSAC.392053.
  19. Sacher WD, Poon JKS. Dynamics of microring resonator modulators. Opt Express 2008; 16: 15741-15753. DOI: 10.1364/OE.16.015741.
  20. Alexeyev CN, Barshak EV, Lapin BP, Yavorsky MA. Transmission of optical vortices through fiber loop resonators. Opt Lett 2019; 44: 4044-4047. DOI: 10.1364/OL.44.004044.
  21. Alexeyev CN, Barshak EV, Lapin BP, Yavorsky MA. Topological resonances, superefficient orbital-angular-momentum control, and spin-orbit-interaction enhancement in fiber-loop resonators. Phys Rev A 2020; 101: 063801. DOI: 10.1103/PhysRevA.101.063801.
  22. Alexeyev CN, Barshak EV, Lapin BP, Vikulin DV, Yavorsky MA. Parametric control of propagation of optical vortices through fibre ring resonators. J Opt 2021; 23: 064005. DOI: 10.1088/2040-8986/abf6de.
  23. Alexeyev CN, Milodan AV, Alexeyeva MC, Yavorsky MA. Inversion of the topological charge of optical vortices in a coil fiber resonator. Opt Lett 2016; 41: 1526-1529. DOI: 10.1364/OL.41.001526.
  24. Alexeyev CN, Aliyeva SS, Barshak EV, Lapin BP, Yavorsky MA. Super-efficient control of angular momentum and mode conversion in snake-type fiber resonators. J Opt Soc Am B 2021; 38: F29-F37. DOI: 10.1364/JOSAB.433997.
  25. Alexeyev CN, Alieva SS, Barshak EV, Lapin BP, Yavorsky MA. Structured light transformations and orbital angular momentum control in a three-coil optical snake. Computer Optics 2022; 46(5): 701-712. DOI: 10.18287/2412-6179-CO-1121.
  26. Sumetsky M. Optical fiber microcoil resonator. Opt Express 2004; 12: 2303-2316. DOI: 10.1364/OPEX.12.002303.
  27. Yariv A, Xu Y, Lee RK, Scherer A. Coupled-resonator optical waveguide: a proposal and analysis. Opt Lett 1999; 24: 711-713. DOI: 10.1364/OL.24.000711.
  28. Heebner JE, Boyd RW, Park Q-H. SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides. J Opt Soc Am B 2002; 19: 722-731. DOI: 10.1364/JOSAB.19.000722.
  29. Sumetsky M. Vertically-stacked multi-ring resonator. Opt Express 2005; 13: 6354-6375. DOI: 10.1364/OPEX.13.006354.
  30. Koonath P, Indukuri T, Jalali B. Monolithic 3-D silicon photonics. J Lightw Technol 2006; 24: 1796-1804. DOI: 10.1109/JLT.2006.871121.
  31. Alexeyev CN, Alieva SS, Barshak EV, Lapin BP, Yavorsky MA. Slow optical vortices in multicoil fiber resonators. J Opt Soc Am B 2022; 39: 2289-2294. DOI: 10.1364/JOSAB.461036.
  32. Schwelb O. Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview. J Lightw Technol 2004; 22: 1380-1394. DOI: 10.1109/JLT.2004.827666.
  33. Alexeyev AN, Alexeyev CN, Fadeyeva TA, Volyar AV. Analysis of singularity properties of the radiation field in low-mode optical fibres. Ukrainian Journal of Physical Optics 2006; 7: 11-17. DOI: 10.3116/16091833/7/1/11/2006.
  34. Prisiazhniuk AV, Sokolenko BV, Poletaev DA, Shostka NV. Digital holographic testing of the optical fiber at welding area. J Phys: Conf Ser 2019; 1400: 066042. DOI: 10.1088/1742-6596/1400/6/066042.
  35. Milione G, Ip E, Li MJ, Stone J, Peng G, Wang T. Mode crosstalk matrix measurement of a 1  km elliptical core few-mode optical fiber. Opt Lett 2016; 41: 2755-2758. DOI: 10.1364/ol.41.002755.
  36. sRenner H. Bending losses of coated single-mode fibers: a simple approach. J Lightw Technol 1992; 10: 544-551.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20