(48-2) 06 * << * >> * Russian * English * Content * All Issues

Discretization of a mathematical model for image analysis based on the optics of spiral beams
S.A. Kishkin 1, S.P. Kotova 2

MIREA – Russian Technological University,
119454, Moskow, Russia, Vernadskogo 78-1;
Samara Branch of the Physical Institute RAS,
443011, Samara, Russia, Novo-Sadovaya 221

 PDF, 1146 kB

DOI: 10.18287/2412-6179-CO-1365

Pages: 204-209.

Full text of article: Russian language.

Abstract:
The article briefly outlines a mathematical model for recognizing contours of the objects of interest in a raster image. The process of its discretization is discussed in more detail as part of the development of numerical methods that allow the proposed model to be implemented using  modern computer technology, while achieving real-time performance. Explicit mathematical procedures suitable for writing application software codes are given, an estimate of computational complexity is obtained, and the possibility of achieving real-time performance is confirmed. Results of a numerical experiment on the reconstruction of spiral light beams are presented.

Keywords:
computer optics, machine vision, image recognition, spiral light beams.

Citation:
Kishkin SA, Kotova SP. Discretization of a mathematical model for image analysis based on the optics of spiral beams. Computer Optics 2024; 48(2): 204-209. DOI: 10.18287/2412-6179-CO-1365.

References:

  1. Gallego G, et al. Event-based vision: A survey. IEEE Trans Pattern Anal Mach Intell 2022; 44(1): 154-180. DOI: 10.1109/TPAMI.2020.3008413.
  2. Kong Y, Fu Y. Human action recognition and prediction: A survey. Int J Comput Vis 2022; 130: 1366-1401. DOI: 10.1007/s11263-022-01594-9.
  3. Stable Diffusion Public Release. 2022. Source: <https://stability.ai/blog/stable-diffusion-public-release>.
  4. Zhang D, Tan Z. A review of optical neural networks. Appl Sci 2022; 12: 5338. DOI: 10.3390/app12115338.
  5. Mohan R, et al. Neural architecture search for dense prediction tasks in computer vision. Int J Comput Vis 2023; 131: 1784-1807. DOI: 10.1007/s11263-023-01785-y.
  6. Viering T, Loog M. The shape of learning curves: A review. IEEE Trans Pattern Anal Mach Intell 2023; 45(6): 7799-7819. DOI: 10.1109/TPAMI.2022.3220744.
  7. Volostnikov VG, Kishkin SA, Kotova SP. Contour analysis and modern optics of Gaussian beams. Computer Optics 2014: 38(3): 476-481. DOI: 10.18287/0134-2452-2014-38-3-476-481.
  8. Volostnikov VG, Kishkin SA, Kotova SP. Analysis of contour images using optics of spiral beams. Quantum Electron 2018; 48(3): 268-274. DOI: 10.1070/QEL16553.
  9. Volyar AV, Abramochkin EG, Akimova YE, Bretsko MV. Reconstruction of stable states of spiral vortex beams. Computer Optics 2022; 46(1): 5-15. DOI: 10.18287/2412- 6179-CO-1032.
  10. Volyar AV, Akimova YaE. Transformations of structurally stable states of spiral beams subjected to sector perturbations. Computer Optics 2021; 45(6): 789-799. DOI: 10.18287/2412-6179-CO-1009.
  11. Volyar AV, Abramochkin EG, Razueva EV, Akimova YaE, Bretsko MV. Structural stability of spiral beams and fine structure of an energy flow. Computer Optics 2021; 45(4): 482-489. DOI: 10.18287/2412-6179-CO-885.
  12. Abramochkin EG, Volostnikov VG. Modern optics of Gaussian beams [In Russian]. Moscow: “Fizmatlit” Publisher; 2010. ISBN: 978-5-9221-1216-1.
  13. IEEE 754-2019. IEEE Standard for floating-point arithmetic. (Revision of IEEE 754-2008). DOI: 10.1109/IEEESTD.2019.8766229.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20