(48-2) 07 * << * >> * Russian * English * Content * All Issues
  
Diffractive elements in thermal imaging monofocal dual-band objectives: design and technological aspects
 G.I. Greisukh 1, I.A. Levin 2, O.A. Zakharov 1
 1 Penza State University of Architecture and Construction,
     440028, Russia, Penza, Germana Titova 28;
     2 PJSC "Krasnogorsky Zavod",
  143400, Russia, Krasnogorsk, Rechnaya 8
 PDF, 966 kB
  PDF, 966 kB
DOI: 10.18287/2412-6179-CO-1336
Pages: 210-216.
Full text of article: Russian language.
 
Abstract:
Using the example of the  development of two simple dual-band monofocal IR objectives, approaches to the  layout and design of their optical schemes are demonstrated, depending on  whether compensation for the effects of temperature changes on the optical  characteristics of these lenses is required or not. It is shown that in the  case when thermal compensation is not required, superior optical  characteristics can be achieved in a simple triplet, in which the flat surface  of the frontal fractional lens carries a diffractive microstructure. In the  case of passive athermalization, the optical scheme of the objective becomes  more complicated and consists of refractive two-line power and correction  components, in the latter of which the flat surface of one of the lenses  carries a diffractive microstructure. Due to highly efficient diffractive  microstructures, the longitudinal chromaticism of both objectives is reduced  almost to the diffraction limit and, in combination with a low level of  residual monochromatic aberrations at high light intensity, the maximum  resolution is provided for uncooled microbolometers used as matrix receivers.
Keywords:
diffractive optical  element, monofocal dual-band IR objective, passive athermalization,  apochromatization, optical circuit layout, optical characteristics.
Citation:
  Greisukh GI, Levin IA, Zakharov OA. Diffractive elements in thermal imaging monofocal dual-band objectives: design and technological aspects. Computer Optics 2024; 48(2): 210-216. DOI: 10.18287/2412-6179-CO-1336.
Acknowledgements:
  This work was funded by  the Russian Science Foundation under project No. 20-19-00081.
References:
  - Wang H, Bai Y, Luo J.  Hybrid refractive/diffractive optical system design for light and compact  uncooled longwave infrared imager. Proc SPIE 2012; 8416: 84162N.
 
- Tarasishin AV, Bezdidko  SN. Compact lens of mid-infrared range [In Russian]. Pat RF of Invent N 2621366  of June 2, 2017, Russian Bull of Inventions N16, 2017.
 
- Greisukh  GI, Levin IA,  Ezhov EG. Design of ultra-high-aperture dual-range athermal infrared  objectives. Photonics 2022; 9: 742. DOI: 10.3390/photonics9100742.
 
- Laborde V,  Loicq J, Hastanin J, Habraken S. Multilayer diffractive optical element  material selection method based on transmission, total internal reflection, and  thickness. Appl Opt 2022; 61(25): 7415-7423. DOI: 10.1364/AO.465999.
 
- Mao  S, Zhao J, He D. Analytical and comprehensive optimization design for  multilayer diffractive optical elements in infrared dual band. Opt Commun 2020;  472: 125831. DOI: 10.1016/j.optcom.2020.125831.
 
- Greysukh GI,  Danilov VA, Ezhov EG, Antonov AI, Usievich BA. Diffractive elements in optical  systems of middle and double IR range [In Russian]. Fotonika 2020; 14(2):  160-169. DOI: 10.22184/1993-7296.FRos.2020.14.2.160.169.
 
- Greĭsukh  GI, Ezhov EG, Stepanov SA. Taking diffractive efficiency into account in the  design of refractive/diffractive optical systems. J Opt Technol 2016; 83(3):  163-167. DOI: 10.1364/JOT.83.000163.
 
- ASTRON-64017-2.  Microbolometer dual-spectral array detector. 2023. Source:  <https://astrohn.ru/product/astrohn-64017-2/>.
 
- CDGM.  Optics. HWS Chalcogenide Infrared Glass. 2023. Source: <http://www.cdgmgd.com/go.htm?url=goods&k=HWS_Infrared_Glass>.
 
- ZEMAX:  software for optical system design. 2023. Source: <https://www.zemax.com/>.
 
- Hassan  HM, Eldessouky TA-E, Medhat M. Compact athermalized LWIR objective lens. J Opt  2023; 52(1): 261-268. DOI: 10.1007/s12596-022-00892-2.
 
- Doğan  A, Bacıoğlu A. Design of a passive optical athermalization of dual-band IR  seeker for precision-guided systems. J Mod Opt 2021; 68(11): 593-603. DOI:  10.1080/09500340.2021.1937734.
 
- Moharam  MG, Pommet DA, Grann EB, Gaylord TK. Stable implementation of the rigorous  coupled-wave analysis for surface-relief gratings: enhanced transmittance  matrix approach. J Opt Soc Am A 1995; 12(5): 1077-1086. DOI:  10.1364/JOSAA.12.001077.
 
- Antonov  AI, Vasin LA, Greisukh GI. Approaches to the algorithmization of the  rigorous coupled-wave analysis. Computer Optics 2019; 43(2): 209-219. DOI:  10.18287/2412-6179-2019-43-2-209-219.
 
- Antonov  AI, Greisukh GI, Kazin SV. Certificate of state registration of the computer  program «PSUAC-DE» No. 2022681578 (Russian Federation), 2022.
 
- Cam software for ultra precision diamond machined  optics. 2023. Source:  <https://www.precitech.com/-/media/ametekprecitech/documents/brochures/diffsys/diffsys%20brochure%20160323.pdf?la=en>.
 
- Zhou  P, Xue C, Yang C, Liu C, Liu X. Diffraction efficiency evaluation for diamond  turning of harmonic diffractive optical elements. Appl Opt 2020; 59(6):  1537-1544.
 
- Blough  CG, Rossi M, Mack SK, Michaels RL. Single-point diamond turning and replication  of visible and near-infrared diffractive optical elements. Appl Opt 1997;  36(20): 4648-4654.
 
- Khatri  N, Berwal S, Manjunath K, Singh B, Mishra V, Goel S, Research on development of  aspheric diffractive optical element for mid-infrared imaging. Infrared Phys  Technol 2023; 129: 104582.
 
- Germanium  infrared (IR) hybrid aspheric lenses. 2023. Source:  <https://www.edmundoptics.com/f/germanium-infrared-ir-hybrid-aspheric-lenses/14182/>. 
- sRahmlow TD Jr,  Lazo-Wasem JE, Vizgaitis JN, Flanagan-Hyde J. Dual-band antireflection coatings  on 3rd Gen lenses. Proc SPIE 2011; 8012: 80123D. DOI: 10.1117/12.888100.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20