(48-3) 05 * << * >> * Russian * English * Content * All Issues

A multiscale approach to a linear programming problem for calculating a refractive optical element forming a given far-field illumination distribution
D.V. Soshnikov 1,2, A.A. Mingazov 1, L.L. Doskolovich 1,2

Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 898 kB

DOI: 10.18287/2412-6179-CO-1379

Pages: 356-362.

Full text of article: Russian language.

Abstract:
We consider an approach to the calculation of a refractive optical element generating a prescribed irradiance distribution in the far field for a plane incident beam based on a certain variational problem. We consider an explicit formulation of this problem in the form of the Monge-Kantorovich mass transfer problem. We also demonstrate a connection between the mass transfer problem and the dual linear variational problem. A numerical solution of the linear variational problem is also considered. The direct solution of this type of problem presents a huge computational complexity. To overcome this difficulty we use the so-called multiscale approach based on constructing a chain of approximations that are solutions on refining grids.

Keywords:
optical design, geometric optics, Monge-Kantorovich problem, linear variational problem, linear programming.

Citation:
Soshnikov DV, Mingazov AA, Doskolovich LL. A multiscale approach to a linear programming problem for calculating a refractive optical element forming a given far-field illumination distribution. Computer Optics 2024; 48(3): 356-362. DOI: 10.18287/2412-6179-CO-1379.

Acknowledgements:
This work was performed within the State assignment for scientific research to Samara University (project FSSS-2024-0014) in part of the development and implementation of the multiscale approach and the State assignment of the NRC "Kurchatov Institute" in part of establishing the relationship between the linear functional and the cost functional.

References:

  1. Glimm T, Oliker VI. Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem. J Math Sci 2003; 117: 4096-4108. DOI: 10.1023/A:1024856201493..
  2. Wang XJ. On design of a reflector antenna II. Calc Var Partial Differ Equ 2004; 20: 329-341. DOI: 10.1007/s00526-003-0239-4.
  3. Glimm T, Oliker VI. Optical design of two-reflector systems, the Monge-Kantorovich mass transfer problem and Fermat’s principle. Indiana Univ Math J 2004; 53(5): 1255-1277. DOI: 10.1512/iumj.2004.53.2455.
  4. Rubinstein J, Wolansky G. Intensity control with a free-form lens. J Opt Soc Am A 2007; 24(2): 463-469. DOI: 10.13 64/JOSAA.24.000463.
  5. Doskolovich LL, Mingazov AA, Bykov DA, Andreev ES, Bezus EA. Variational approach to calculation of light field eikonal function for illuminating a prescribed region. Opt Express 2017; 25(22): 26378-26392. DOI: 10.1364/OE.25.026378.
  6. Doskolovich LL, Mingazov AA, Bykov DA, Andreev ES. Variational approach to eikonal function computation. Computer Optics 2018; 42(4): 557-567. DOI: 10.18287/2412-6179-2018-42-4-557-567.
  7. Doskolovich LL, Bykov DA, Andreev ES, Bezus EA, Oliker V. Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems. Opt Express 2018; 26(19): 24602-24613. DOI: 10.1364/OE.26.024602.
  8. Bykov DA, Doskolovich LL, Mingazov AA, Andreev ES, Kazanskiy NL. Linear assignment problem in the design of freeform refractive optical elements generating prescribed irradiance distributions. Opt Express 2018; 26(21): 27812-27825. DOI: 10.1364/OE.26.027812.
  9. Yadav NK. Monge-Ampere problems with non-quadratic cost function: application to freeform optics. Eindhoven: Technische Universiteit Eindhoven; 2018.
  10. Gutierrez CE, Huang Q. The near field refractor. Annales de l'Institut Henri Poincaré C, Analyse non linéaire 2014; 31(4): 655-684. DOI: 10.1016/j.anihpc.2013.07.001.
  11. Mingazov AA, Doskolovich LL, Bykov DA, Byzov EV. Support quadric method in non-imaging optics problems that can be reformulated as a mass transfer problem. Computer Optics 2022; 46(3): 353-365. DOI: 10.18287/2412-6179-CO-1055.
  12. Graf T, Oliker V. An optimal transport approach to near-field reflector problem in optical design. Inv Problems 2012; 28(2): 025001. DOI: 10.1088/0266-5611/28/2/025001.
  13. Schwartzburg Y, Testuz R, Tagliasacchi A, Pauly M. High-contrast computational caustic design. ACM Trans on Graph 2014; 33(4). DOI: 10.1145/2601097.2601200.
  14. Canavesi С, Cassarly WJ, Rolland JP. Direct calculation algorithm for two-dimensional reflector design. Opt Lett 2012; 37(18): 3852-3854. DOI: 10.1364/OL.37.003852.
  15. Canavesi С, Cassarly WJ, Rolland JP. Observations on the linear programming formulation of the single reflector design problem. Opt Express 2012; 20(4): 4050-4055. DOI: 10.1364/OE.20.004050.
  16. Merigot Q. A multiscale approach to optimal transport. Comp Graph Forum 2011; 30(5): 1583-1592. DOI: 10.1111/j.1467-8659.2011.02032.x.
  17. Bykov DA, Doskolovich LL, Bezus EA. Multiscale approach and linear assignment problem in designing mirrors generating far-field irradiance distributions. Opt Lett 2020; 45(13): 3549-3552. DOI: 10.1364/OL.393895.
  18. Doskolovich LL, Mingazov AA, Bykov DA, Andreev ES. Variational approach to eikonal function computation. Computer Optics 2018; 42(4): 557-567. DOI: 10.18287/2412-6179-2018-42-4-557-567.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20