(48-3) 05 * << * >> * Russian * English * Content * All Issues
  
A multiscale approach to a linear programming problem for calculating a refractive optical element forming a given far-field illumination distribution
 D.V. Soshnikov 1,2, A.A. Mingazov 1, L.L. Doskolovich 1,2
 1 Image Processing Systems Institute, NRC "Kurchatov Institute",
     443001, Samara, Russia, Molodogvardeyskaya 151;
     2 Samara National Research University,
  443086, Samara, Russia, Moskovskoye Shosse 34
 PDF, 898 kB
  PDF, 898 kB
DOI: 10.18287/2412-6179-CO-1379
Pages: 356-362.
Full text of article: Russian language.
 
Abstract:
We consider an approach  to the calculation of a refractive optical element generating a prescribed  irradiance distribution in the far field for a plane incident beam based on a  certain variational problem. We consider an explicit formulation of this  problem in the form of the Monge-Kantorovich mass transfer problem. We also  demonstrate a connection between the mass transfer problem and the dual linear  variational problem. A numerical solution of the linear variational problem is  also considered. The direct solution of this type of problem presents a huge  computational complexity. To overcome this difficulty we use the so-called  multiscale approach based on constructing a chain of approximations that are  solutions on refining grids.
Keywords:
optical design,  geometric optics, Monge-Kantorovich problem, linear variational problem, linear  programming.
Citation:
  Soshnikov DV, Mingazov  AA, Doskolovich LL. A multiscale approach to a linear programming problem for  calculating a refractive optical element forming a given far-field illumination  distribution. Computer Optics 2024; 48(3): 356-362. DOI: 10.18287/2412-6179-CO-1379.
Acknowledgements:
  This work was performed  within the State assignment for scientific research to Samara University  (project FSSS-2024-0014) in part of the development and implementation of the  multiscale approach and the State assignment of the NRC "Kurchatov  Institute" in part of establishing the relationship between the linear  functional and the cost functional.
References:
  - Glimm T, Oliker VI.  Optical design of single reflector systems and the Monge-Kantorovich mass  transfer problem. J Math Sci 2003; 117: 4096-4108. DOI: 10.1023/A:1024856201493..
 
- Wang XJ. On design of a  reflector antenna II. Calc Var Partial Differ Equ 2004; 20: 329-341. DOI:  10.1007/s00526-003-0239-4.
 
- Glimm  T, Oliker VI. Optical design of two-reflector systems, the Monge-Kantorovich  mass transfer problem and Fermat’s principle. Indiana Univ Math J 2004; 53(5): 1255-1277.  DOI: 10.1512/iumj.2004.53.2455.
 
- Rubinstein  J, Wolansky G. Intensity control with a free-form lens. J Opt Soc Am A 2007;  24(2): 463-469. DOI: 10.13 64/JOSAA.24.000463.
 
- Doskolovich  LL, Mingazov AA, Bykov DA, Andreev ES, Bezus EA. Variational approach to calculation of light  field eikonal function for illuminating a prescribed region. Opt Express 2017;  25(22): 26378-26392. DOI: 10.1364/OE.25.026378.
 
- Doskolovich  LL, Mingazov AA, Bykov DA, Andreev ES. Variational approach to eikonal function  computation. Computer Optics 2018; 42(4): 557-567. DOI:  10.18287/2412-6179-2018-42-4-557-567.
 
- Doskolovich  LL, Bykov DA, Andreev ES, Bezus EA, Oliker V. Designing double freeform  surfaces for collimated beam shaping with optimal mass transportation and  linear assignment problems. Opt Express 2018; 26(19): 24602-24613. DOI:  10.1364/OE.26.024602.
 
- Bykov  DA, Doskolovich LL, Mingazov AA, Andreev ES, Kazanskiy NL. Linear assignment problem in the  design of freeform refractive optical elements generating prescribed irradiance  distributions. Opt Express 2018; 26(21): 27812-27825. DOI:  10.1364/OE.26.027812.
 
- Yadav  NK. Monge-Ampere problems with non-quadratic cost function: application to  freeform optics. Eindhoven: Technische  Universiteit Eindhoven;  2018.
 
- Gutierrez  CE, Huang Q. The near field refractor. Annales de l'Institut Henri Poincaré C,  Analyse non linéaire 2014; 31(4): 655-684. DOI: 10.1016/j.anihpc.2013.07.001.
 
- Mingazov  AA, Doskolovich LL, Bykov DA, Byzov EV. Support quadric method in non-imaging  optics problems that can be reformulated as a mass transfer problem. Computer  Optics 2022; 46(3): 353-365. DOI: 10.18287/2412-6179-CO-1055.
 
- Graf  T, Oliker V. An optimal transport approach to near-field reflector problem in  optical design. Inv Problems 2012; 28(2): 025001. DOI:  10.1088/0266-5611/28/2/025001.
 
- Schwartzburg  Y, Testuz R, Tagliasacchi A, Pauly M. High-contrast computational caustic  design. ACM Trans on Graph 2014; 33(4). DOI: 10.1145/2601097.2601200.
 
- Canavesi С, Cassarly WJ, Rolland JP. Direct calculation  algorithm for two-dimensional reflector design. Opt Lett 2012; 37(18):  3852-3854. DOI: 10.1364/OL.37.003852.
 
- Canavesi  С, Cassarly WJ, Rolland  JP. Observations on the linear programming formulation of the single reflector  design problem. Opt Express 2012; 20(4): 4050-4055. DOI: 10.1364/OE.20.004050.
 
- Merigot  Q. A multiscale approach to optimal transport. Comp Graph Forum 2011; 30(5):  1583-1592. DOI: 10.1111/j.1467-8659.2011.02032.x.
 
- Bykov  DA, Doskolovich LL, Bezus EA. Multiscale approach and linear assignment problem in designing mirrors  generating far-field irradiance distributions. Opt Lett 2020; 45(13):  3549-3552. DOI: 10.1364/OL.393895. 
- Doskolovich LL, Mingazov AA, Bykov DA, Andreev ES.  Variational approach to eikonal function computation. Computer Optics 2018;  42(4): 557-567. DOI: 10.18287/2412-6179-2018-42-4-557-567.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20