(48-3) 06 * << * >> * Russian * English * Content * All Issues

Ultra-fast highly sensitive flexible infrared detector
A.R. Rymzhina 1, P. Sharma 1,2, V.V. Podlipnov 1,3, D.N. Artemyev 1, K.N. Tukmakov 1, V.S. Pavelyev 1,3, V.I. Platonov 1, P. Mishra 1,4, N. Tripathi 1

Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34;
School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT),
632014, Vellore, Tamil Nadu, India;
Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
Centre for Nanoscience and Nanotechnology. Jamia Millia Islamia (A Central University),
110025, Jamia Nagar, New Delhi, India

 PDF, 2478 kB

DOI: 10.18287/2412-6179-CO-1325

Pages: 363-370.

Full text of article: Russian language.

Abstract:
A comparative analysis of photodetectors based on TiS2 nanosheets and on TiS2 nanosheets functionalized with silver nitrate is carried out. TiS2 nanosheets were synthesized by a chemical vapor transport technique, followed by a 1-hour ultrasonication treatment. The obtained solution was deposited between interdigitated electrodes fabricated on the surface of a flexible substrate using a dielectrophoresis process. Polyethylene terephthalate was used as a flexible substrate material. The characteristics of the fabricated photodetectors were determined by illuminating them with tunable-power laser light at 1064 nm. A significant effect of silver nitrate particles scattered in the volume of the photodetector sensitive material on its efficiency is observed. The superiority of the photodetector based on TiS2 nanosheets functionalized with silver nitrate is demonstrated. This photodetector demonstrates a significant response for all the laser light powers used (11.6, 19.6, 51, 100, and 150 mW), shows fast response (0.23±0.01 s) and recovery (0.49±0.02 s) times, coupled with high sensitivity (260∙103±7∙103 A/W), quantum efficiency (303∙103±8∙103 A/W∙nm) and detectivity (3.10∙1013±0.09∙1013 Jones) at an incident laser light power of 11.6 mW. The results obtained in this study can be used for the development and optimization of modern optoelectronic devices.

Keywords:
flexible photodetector, transition metal dichalcogenides, TiS2 nanosheets, infrared radiation, dielectrophoresis, chemical vapor transport.

Citation:
Rymzhina AR, Sharma P, Podlipnov VV, Artemyev DN, Tukmakov KN, Pavelyev VS, Platonov V, Mishra P, Tripathi N. Ultra-fast highly sensitive flexible infrared detector. Computer Optics 2024; 48(3): XXX-YYY. DOI: 10.18287/2412-6179-CO-1325.

Acknowledgements:
This work was funded by the Russian Science Foundation under grant No. 21-79-00272, https://rscf.ru/project/21-79-00272/.

References:

  1. Abid, Sehrawat P, Islam SS, Gulati P, Talib M, Mishra P, Khanuja M. Development of highly sensitive optical sensor from carbon nanotube-alumina nanocomposite free-standing films: CNTs loading dependence sensor performance analysis. Sens Actuator A Phys 2018; 269: 62-69. DOI: 10.1016/j.sna.2017.10.062.
  2. Segev-Bar M, Haick H. Flexible sensors based on nanoparticles. ACS Nano 2013; 7(10): 8366-8378. DOI: 10.1021/nn402728g.
  3. Abid, Sehrawat P, Julien CM, Islam SS. WS2 quantum dots on e-textile as a wearable UV photodetector: How well reduced graphene oxide can serve as a carrier transport medium? ACS Appl Mater Interfaces 2020; 12(35): 39730-39744. DOI: 10.1021/acsami.0c08028.
  4. Colace L, Masini G, Galluzzi F, Assanto G, Capellini G, Gaspare LDi, Palange E, Evangelisti F. Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si. Appl Physi Lett 1998; 72(24): 3175-3177. DOI: 10.1063/1.121584.
  5. Choi C, Choi MK, Liu S, Kim MS, Park OK, Im C, Kim J, Qin X, Lee GJ, Cho KW, Kim M, Joh E, Lee J, Son D, Kwon SH, Jeon NL, Song YM, Lu N, Kim DH. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat Commun 2017; 8: 1664. DOI: 10.1038/s41467-017-01824-6.
  6. Chen S, Teng C, Zhang M, Li Y, Xie D, Shi G. A flexible UV–Vis–NIR photodetector based on a perovskite/conjugated-polymer composite. Adv Mater 2016; 28: 5969. DOI: 10.1002/adma.201600468.
  7. Sun Z, Liu Z, Li J, Tai G, Lau SP, Yan F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv Mater 2012; 24: 5878. DOI: 10.1002/adma.201202220.
  8. Tao Y, Wu X, Wang W, Wang J. Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film. J Mater Chem C 2015; 6: 1347. DOI: 10.1039/C4TC02325K.
  9. Sahatiya P, Puttapati SK, Srikanth VVSS, Badhulika S. Graphene-based wearable temperature sensor and infrared photodetector on a flexible polyimide substrate. Flex Print Electron 2016; 1(2): 025006. DOI: 10.1088/2058-8585/1/2/025006.
  10. Chen G, Wang W, Wang C, Ding T, Yang Q. Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors. Adv Sci 2015; 2: 1500109. DOI: 10.1002/advs.201500109.
  11. Chitara B, Panchakarla LS, Krupanidhi SB, Rao CNR. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv Mater 2011; 23: 5419-5424. DOI: 10.1002/adma.201101414.
  12. Zheng Z, Zhang T, Yao J, Zhang Y, Xu J, Yang G. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 2016; 27: 255501. DOI: 10.1088/0957-4484/27/22/225501.
  13. Hao Q, Tang X, Cheng Y, Hu Y. Development of flexible and curved infrared detectors with HgTe colloidal quantum dots. Infrared Phys Technol 2020; 108: 103344. DOI: 10.1016/j.infrared.2020.103344.
  14. Mak KF, Lee C, Hone J, Shan J, Heinz TF. atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 2010; 105: 136805. DOI: 10.1103/PhysRevLett.105.136805.
  15. Buscema M, Barkelid M, Zwiller V, Zant HSJ, Steele GA, Castellanos-Gomez A. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett 2013; 13(2): 358-363. DOI: 10.1021/nl303321g.
  16. Chang YH, Zhang W, Zhu Y, Han Y, Pu J, Chang JK, Hsu WT, Huang JK, Hsu CL, Chiu MH. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014; 8(8): 8582-8590. DOI: 10.1021/nn503287m.
  17. Perea-Lopez N, Elıas AL, Berkdemir A, Castro-Beltran A, Gutierrez HR, Feng S, Lv R, Hayashi T, Lopez-Urıas F, Ghosh S, Muchharla B, Talapatra S, Terrones H, Terrones M. Photosensor device based on few-layered WS2 films. Adv Funct Mater 2013; 23: 5511. DOI: 10.1002/adfm.201300760.
  18. Groenendijk DJ, Buscema M, Steele GA, Michaelis de Vasconcellos S, Bratschitsch R, Zant HSJ, Castellanos-Gomez A. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett 2014; 14(10): 5846-5852. DOI: 10.1021/nl502741k.
  19. Liu F, Shimotani H, Shang H, Kanagasekaran T, Zólyomi V, Drummond N, Fal’ko VI, Tanigaki K. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano 2014; 8(1): 752-760. DOI: 10.1021/nn4054039.
  20. Hu P, Wen Z, Wang L, Tan P, Xiao K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012; 6(7): 5988-5994. DOI: 10.1021/nn300889c.
  21. Hu P, Wang L, Yoon M, Zhang J, Feng W, Wang X, Wen Z, Idrobo JC, Miyamoto Y, Geohegan DB, Xiao K. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett 2013; 13(4): 1649-1654. DOI: 10.1021/nl400107k.
  22. Jacobs-Gedrim RB, Shanmugam M, Jain N, Durcan CA, Murphy MT, Murray TM, Matyi RJ, Moore RL, Yu B. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano 2014; 8(1): 514-521. DOI: 10.1021/nn405037s.
  23. Lei S, Ge L, Najmaei S, George A, Kappera R, Lou J, Chhowalla M, Yamaguchi H, Gupta G, Vajtai R. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano 2014; 8(2): 1263-1272. DOI: 10.1021/nn405036u.
  24. Tripathi N, Pavelyev V, Sharma P, Kumar S, Rymzhina A, Mishra P. Review of titanium trisulfide (TiS3): A novel material for next generation electronic and optical devices. Mater Sci Semicond Process 2021; 127: 105699. DOI: 10.1016/j.mssp.2021.105699.
  25. Tao YR, Wu XC, Xiong WW. Flexible visible-light photodetectors with broad photoresponse based on ZrS3 nanobelt films. Small 2014; 10: 4905. DOI: 10.1002/smll.201401376.
  26. Schairer W, Shafer MW. Growth and optical absorption spectra of the layer-type trichalcogenides ZrS3 and HfS3. Phys Status Solidi (a) 1973; 17: 181. DOI: 10.1002/pssa.2210170119.
  27. Buscema M, Groenendijk DJ, Steele GA, Zant HS, Castellanos-Gomez A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat Commun 2014; 5: 4651. DOI: 10.1038/ncomms5651.
  28. Buscema M, Island JO, Groenendijk DJ, Blanter SI, Steele GA, Zant HSJ, Castellanos-Gomez A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev 2015; 44: 3691. DOI: 10.1039/C5CS00106D.
  29. Wan C, Kodama Y, Kondo M, Sasai R, Qian X, Gu X, Koga K, Yabuki K, Yang R, Koumoto K. Dielectric Mismatch mediates carrier mobility in organic-intercalated layered TiS2. Nano Lett 2015; 15(10): 6302-6308. DOI: 10.1021/acs.nanolett.5b01013.
  30. Sherrell PC., Sharda K, Grotta C, Ranalli J, Sokolikova MS, Pesci FM, Palczynski P, Bemmer VL, Mattevi C. Thickness-dependent characterization of chemically exfoliated TiS2 nanosheets. ACS Omega 2018; 3(8): 8655-8662. DOI: 10.1021/acsomega.8b00766.
  31. Glebko N, Aleksandrova I, Tewari GC, Tripathi TS, Karppinen M, Karttunen AJ. Electronic and vibrational properties of TiS2, ZrS2, and HfS2: periodic trends studied by dispersion-corrected hybrid density functional methods. J Phys Chem C 2018; 122(47): 26835-26844. DOI: 10.1021/acs.jpcc.8b08099.
  32. Varma SJ, Kumar J, Liu Y, Layne K, Wu J, Liang C, Nakanishi Y, Aliyan A, Yang W, Ajayan PM., Thomas J. 2D TiS2 layers: a superior nonlinear optical limiting material. Adv Opt Mater 2017; 5: 1700713. DOI: 10.1002/adom.201700713.
  33. Talib M, Tripathi N, Sharma P, Hasan PMZ., Melaibari AA, Darwesh R, Arsenin AV, Volkov VS, Yakubovsky DI, Kumar S, Pavelyev V, Mishra P. Development of ultra-sensitive broadband photodetector: a detailed study on hidden photodetection-properties of TiS2 nanosheets. J Mater Res Technol 2021; 14: 1243-1254. DOI: 10.1016/j.jmrt.2021.07.032.
  34. Pavelyev V, Sharma P, Rymzhina A, Mishra P, Tripathi N. Advances in transition metal dichalcogenides-based flexible photodetectors. J Mater Sci Mater Electron 2022; 33: 24397-24433. DOI: 10.1007/s10854-022-09204-7.
  35. Talib M, Tabassum R, Abid, Islam SS, Mishra P. Improvements in the performance of a visible-NIR photodetector using horizontally aligned TiS3 Nanoribbons. ACS Omega 2019; 4(4): 6180-6191. DOI: 10.1021/acsomega.8b03067.
  36. Frisenda R, Giovanelli E, Mishra P, Gant P, Flores E, Sánchez C, Ares JR, De Lara PD, Ferrer IJ, Pérez EM, Castellanos-Gomez A. Dielectrophoretic assembly of liquid-phase-exfoliated TiS3 nanoribbons for photodetecting applications. Chem Commun 2017; 53(45): 6164-6167. DOI: 10.1039/c7cc01845b.
  37. Zhang W, Huang J-K, Chen C-H, Chang Y-H, Cheng Y-J, Li L-J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv Mater 2013; 25(25): 3456-3461. DOI: 10.1002/adma.201301244.
  38. Kwon J, Hong YK, Han G, Omkaram I, Choi W, Kim S, Yoon Y. Giant photoamplification in indirect-bandgap multilayer MoS2 phototransistors with local bottom-gate structures. Adv Mater 2015; 27(13): 2224-2230. DOI: 10.1002/adma.201404367.
  39. Choi W, Cho MY, Konar A, Lee JH, Cha GB, Hong SC, Kim S, Kim J, Jena D, Joo J, Kim S. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater 2012; 24(43): 5832-5836. DOI: 10.1002/adma.201201909.
  40. Pak Y, Park W, Mitra S, Devi AAS, Loganathan K, Kumaresan Y, Kim Y, Cho B, Jung GY, Hussain MM, Roqan IS. Enhanced performance of MoS2 photodetectors by inserting an ALD-processed TiO2 interlayer. Small 2018; 14(5): 1703176. DOI: 10.1002/smll.201703176.
  41. Wang X, Huang L, Peng Y, Huo N, Wu K, Xia C, Wei Z, Tongay S, Li J. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res 2016; 9(2): 507-516. DOI: 10.1007/s12274-015-0932-6.
  42. Zhou X, Zhou N, Li C, Song H, Zhang Q, Hu X, Gan L, Li H, Lü J, Luo J, Xiong J, Zhai T. Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors. 2D Materials 2017; 4(2): 025048. DOI: 10.1088/2053-1583/aa6422.
  43. Chen Y, Gan L, Li H, Ma Y, Zhai T. Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: a typical study on WS2. Adv Mater 2017; 29(7): 1603550. DOI: 10.1002/adma.201603550.
  44. Kang X, Lan C, Li F, Wang W, Yip SP, Meng Y, Wang F, Lai Z, Liu C, Ho JC. Van der Waals PdSe2/WS2 heterostructures for robust high-performance broadband photodetection from visible to infrared optical communication band. Adv Opt Mater 2021; 9(7): 2001991. DOI: 10.1002/adom.202001991.
  45. Li K, Du C, Gao H, Yin T, Zheng L, Leng J, Wang W. Ultrafast and polarization-sensitive ReS2/ReSe2 heterostructure photodetectors with ambipolar photoresponse. ACS Appl Mater Interfaces 2022; 14(29): 33589-33597. DOI: 10.1021/acsami.2c09674.
  46. Hafeez M, Gan L, Li H, Ma Y, Zhai T. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv Mater 2016; 28(37): 8296-8301. DOI: 10.1002/adma.201601977.
  47. Ko BM, Khan MF, Dastgeer G, Han GN, Khan MA, Eom J. Reconfigurable carrier type and photodetection of MoTe2 of various thicknesses by deep ultraviolet light illumination. Nanoscale Adv 2022; 4: 2744-2751. DOI: 10.1039/D1NA00881A.
  48. Wang Y, Zhang Y, Cheng Q, Pang J, Chu Y, Ji H, Gao J, Han Y, Han L, Liu H, Zhang Y. Large area uniform PtSx synthesis on sapphire substrate for performance improved photodetectors. Appl Mater Today 2021; 25: 101176. DOI: 10.1016/j.apmt.2021.101176.
  49. Li L, Wang W, Chai Y, Li H, Tian M, Zhai T. Few-layered PtS2 phototransistor on h-BN with high gain. Adv Funct Mater 2017; 27(27): 1701011. DOI: 10.1002/adfm.201701011.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20