(48-3) 06 * << * >> * Russian * English * Content * All Issues
  
Ultra-fast highly sensitive flexible infrared detector
 A.R. Rymzhina 1, P. Sharma 1,2, V.V. Podlipnov 1,3, D.N. Artemyev 1, K.N. Tukmakov 1, V.S. Pavelyev 1,3, V.I. Platonov 1, P. Mishra 1,4, N. Tripathi 1
 1 Samara National Research University,
     443086, Samara, Russia, Moskovskoye Shosse 34;
     2 School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT),
     632014, Vellore, Tamil Nadu, India;
     3 Image Processing Systems Institute, NRC "Kurchatov Institute",
     443001, Samara, Russia, Molodogvardeyskaya 151;
     4 Centre for Nanoscience and Nanotechnology. Jamia Millia Islamia (A Central University),
  110025, Jamia Nagar, New Delhi, India
 PDF, 2478 kB
  PDF, 2478 kB
DOI: 10.18287/2412-6179-CO-1325
Pages: 363-370.
Full text of article: Russian language.
 
Abstract:
A comparative analysis  of photodetectors based on TiS2 nanosheets and on TiS2  nanosheets functionalized with silver nitrate is carried out. TiS2 nanosheets were  synthesized by a  chemical vapor transport technique, followed  by a 1-hour  ultrasonication treatment. The obtained solution was deposited between  interdigitated electrodes fabricated on the surface of a flexible substrate using  a dielectrophoresis process. Polyethylene terephthalate was used as a flexible substrate material.  The characteristics of the fabricated photodetectors were determined by  illuminating them with tunable-power  laser light at 1064 nm. A significant effect of silver nitrate  particles scattered in the volume of the photodetector sensitive material on  its efficiency is observed. The superiority of the photodetector based on TiS2  nanosheets functionalized with silver nitrate is demonstrated. This  photodetector demonstrates a significant response for all the laser light powers used (11.6, 19.6, 51, 100, and 150 mW), shows fast response  (0.23±0.01 s) and recovery (0.49±0.02 s)  times, coupled with high sensitivity (260∙103±7∙103 A/W), quantum efficiency (303∙103±8∙103 A/W∙nm)  and detectivity (3.10∙1013±0.09∙1013 Jones)  at an incident laser light  power of 11.6 mW. The results obtained in this study can be used for the  development and optimization of modern optoelectronic devices.
Keywords:
flexible photodetector,  transition metal dichalcogenides, TiS2 nanosheets, infrared  radiation, dielectrophoresis, chemical vapor transport.
Citation:
  Rymzhina AR, Sharma P,  Podlipnov VV, Artemyev DN, Tukmakov KN, Pavelyev VS, Platonov V, Mishra  P, Tripathi N. Ultra-fast highly sensitive flexible infrared detector. Computer  Optics 2024; 48(3): XXX-YYY. DOI: 10.18287/2412-6179-CO-1325.
Acknowledgements:
  This work was  funded by the Russian Science Foundation under grant  No. 21-79-00272, https://rscf.ru/project/21-79-00272/.
References:
  - Abid, Sehrawat P, Islam SS, Gulati P, Talib M, Mishra P, Khanuja M. Development of highly sensitive optical sensor from carbon nanotube-alumina nanocomposite free-standing films: CNTs loading dependence sensor performance analysis. Sens Actuator A Phys 2018; 269: 62-69. DOI: 10.1016/j.sna.2017.10.062.
 
- Segev-Bar M, Haick H. Flexible sensors based on nanoparticles. ACS Nano 2013; 7(10): 8366-8378. DOI: 10.1021/nn402728g.
 
- Abid,  Sehrawat P, Julien CM, Islam SS. WS2 quantum dots on e-textile as a  wearable UV photodetector: How well reduced graphene oxide can serve as a  carrier transport medium? ACS Appl Mater Interfaces 2020; 12(35): 39730-39744.  DOI: 10.1021/acsami.0c08028.
 
- Colace  L, Masini G, Galluzzi F, Assanto G, Capellini G, Gaspare LDi, Palange E,  Evangelisti F. Metal–semiconductor–metal near-infrared light detector based on  epitaxial Ge/Si. Appl Physi Lett 1998; 72(24): 3175-3177. DOI:  10.1063/1.121584.
 
- Choi  C, Choi MK, Liu S, Kim MS, Park OK, Im C, Kim J, Qin X, Lee GJ, Cho KW, Kim M,  Joh E, Lee J, Son D, Kwon SH, Jeon NL, Song YM, Lu N, Kim DH. Human  eye-inspired soft optoelectronic device using high-density MoS2-graphene  curved image sensor array. Nat Commun 2017; 8: 1664. DOI:  10.1038/s41467-017-01824-6.
 
- Chen  S, Teng C, Zhang M, Li Y, Xie D, Shi G. A flexible UV–Vis–NIR photodetector  based on a perovskite/conjugated-polymer composite. Adv Mater 2016; 28: 5969.  DOI: 10.1002/adma.201600468.
 
- Sun  Z, Liu Z, Li J, Tai G, Lau SP, Yan F. Infrared photodetectors based on CVD-grown  graphene and PbS quantum dots with ultrahigh responsivity. Adv Mater 2012; 24:  5878. DOI: 10.1002/adma.201202220.
 
- Tao  Y, Wu X, Wang W, Wang J. Flexible photodetector from ultraviolet to near  infrared based on a SnS2 nanosheet microsphere film. J Mater Chem C  2015; 6: 1347. DOI: 10.1039/C4TC02325K.
 
- Sahatiya  P, Puttapati SK, Srikanth VVSS, Badhulika S.  Graphene-based wearable temperature sensor and infrared photodetector on a flexible polyimide substrate. Flex Print Electron 2016; 1(2): 025006. DOI: 10.1088/2058-8585/1/2/025006.
 
- Chen  G, Wang W, Wang C, Ding T, Yang Q. Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors. Adv Sci 2015; 2:  1500109. DOI: 10.1002/advs.201500109.
 
- Chitara  B, Panchakarla LS, Krupanidhi SB, Rao CNR. Infrared photodetectors based on  reduced graphene oxide and graphene nanoribbons. Adv Mater 2011; 23: 5419-5424. DOI: 10.1002/adma.201101414.
 
- Zheng  Z, Zhang T, Yao J, Zhang Y, Xu J, Yang G. Flexible, transparent and  ultra-broadband photodetector based on large-area WSe2 film for  wearable devices. Nanotechnology 2016; 27: 255501. DOI:  10.1088/0957-4484/27/22/225501.
 
- Hao  Q, Tang X, Cheng Y, Hu Y. Development of flexible and curved infrared detectors  with HgTe colloidal quantum dots. Infrared Phys Technol 2020; 108: 103344. DOI:  10.1016/j.infrared.2020.103344.
 
- Mak  KF, Lee C, Hone J, Shan J, Heinz TF. atomically thin MoS2: a new  direct-gap semiconductor. Phys Rev Lett 2010; 105: 136805. DOI:  10.1103/PhysRevLett.105.136805.
 
- Buscema  M, Barkelid M, Zwiller V, Zant HSJ, Steele   GA, Castellanos-Gomez A. Large  and tunable photothermoelectric effect in single-layer MoS2. Nano  Lett 2013; 13(2): 358-363. DOI: 10.1021/nl303321g.
 
- Chang  YH, Zhang W, Zhu Y, Han Y, Pu J, Chang JK, Hsu WT, Huang JK, Hsu CL, Chiu MH. Monolayer  MoSe2 grown by chemical vapor deposition for fast photodetection.  ACS Nano 2014; 8(8): 8582-8590. DOI: 10.1021/nn503287m.
 
- Perea-Lopez  N, Elıas AL, Berkdemir A, Castro-Beltran A, Gutierrez HR, Feng S, Lv R, Hayashi  T, Lopez-Urıas F, Ghosh S, Muchharla B, Talapatra S, Terrones H, Terrones M.  Photosensor device based on few-layered WS2 films. Adv Funct Mater  2013; 23: 5511. DOI: 10.1002/adfm.201300760.
 
- Groenendijk  DJ, Buscema M, Steele GA, Michaelis de Vasconcellos S,  Bratschitsch R, Zant HSJ, Castellanos-Gomez A. Photovoltaic and  photothermoelectric effect in a double-gated WSe2 device. Nano Lett  2014; 14(10): 5846-5852. DOI: 10.1021/nl502741k.
 
- Liu  F, Shimotani H, Shang H, Kanagasekaran T, Zólyomi V, Drummond N, Fal’ko VI,  Tanigaki K. High-sensitivity photodetectors based on multilayer GaTe flakes.  ACS Nano 2014; 8(1): 752-760. DOI: 10.1021/nn4054039.
 
- Hu  P, Wen Z, Wang L, Tan P, Xiao K. Synthesis of few-layer GaSe nanosheets for  high performance photodetectors. ACS Nano 2012; 6(7): 5988-5994. DOI: 10.1021/nn300889c.
 
- Hu  P, Wang L, Yoon M, Zhang J, Feng W, Wang X, Wen Z, Idrobo JC, Miyamoto Y,  Geohegan DB, Xiao K. Highly responsive ultrathin GaS nanosheet photodetectors  on rigid and flexible substrates. Nano Lett 2013; 13(4): 1649-1654. DOI:  10.1021/nl400107k.
 
- Jacobs-Gedrim  RB, Shanmugam M, Jain N, Durcan CA, Murphy MT, Murray TM, Matyi RJ, Moore RL,  Yu B. Extraordinary photoresponse in two-dimensional In2Se3  nanosheets. ACS Nano 2014; 8(1): 514-521. DOI: 10.1021/nn405037s.
 
- Lei  S, Ge L, Najmaei S, George A, Kappera R, Lou J, Chhowalla M, Yamaguchi H, Gupta  G, Vajtai R. Evolution of the electronic band structure and efficient  photo-detection in atomic layers of InSe. ACS Nano 2014; 8(2): 1263-1272. DOI:  10.1021/nn405036u.
 
- Tripathi  N, Pavelyev V, Sharma P, Kumar S, Rymzhina A, Mishra P. Review of titanium  trisulfide (TiS3): A novel material for next generation electronic  and optical devices. Mater Sci Semicond Process 2021; 127: 105699. DOI:  10.1016/j.mssp.2021.105699.
 
- Tao  YR, Wu XC, Xiong WW. Flexible visible-light photodetectors with broad  photoresponse based on ZrS3 nanobelt films. Small 2014; 10: 4905.  DOI: 10.1002/smll.201401376.
 
- Schairer  W, Shafer MW. Growth and optical absorption spectra of the layer-type  trichalcogenides ZrS3 and HfS3. Phys Status Solidi (a)  1973; 17: 181. DOI: 10.1002/pssa.2210170119.
 
- Buscema  M, Groenendijk DJ, Steele GA, Zant HS, Castellanos-Gomez A.  Photovoltaic effect in few-layer black phosphorus PN junctions defined by local  electrostatic gating. Nat Commun 2014; 5: 4651. DOI: 10.1038/ncomms5651.
 
- Buscema  M, Island JO, Groenendijk DJ, Blanter SI, Steele GA, Zant HSJ,  Castellanos-Gomez A. Photocurrent generation with two-dimensional van der Waals  semiconductors. Chem Soc Rev 2015; 44: 3691. DOI: 10.1039/C5CS00106D.
 
- Wan  C, Kodama Y, Kondo M, Sasai R, Qian X, Gu X, Koga K, Yabuki K, Yang R, Koumoto  K. Dielectric Mismatch mediates carrier mobility in organic-intercalated  layered TiS2. Nano Lett 2015; 15(10): 6302-6308. DOI:  10.1021/acs.nanolett.5b01013.
 
- Sherrell  PC., Sharda K, Grotta C, Ranalli J, Sokolikova MS, Pesci FM, Palczynski P,  Bemmer VL, Mattevi C. Thickness-dependent characterization of chemically exfoliated  TiS2 nanosheets. ACS Omega 2018; 3(8): 8655-8662. DOI:  10.1021/acsomega.8b00766.
 
- Glebko  N, Aleksandrova I, Tewari GC, Tripathi TS, Karppinen M, Karttunen AJ.  Electronic and vibrational properties of TiS2, ZrS2, and  HfS2: periodic trends studied by dispersion-corrected hybrid density  functional methods. J Phys Chem C 2018; 122(47): 26835-26844. DOI:  10.1021/acs.jpcc.8b08099.
 
- Varma  SJ, Kumar J, Liu Y, Layne K, Wu J, Liang C, Nakanishi Y, Aliyan A, Yang W,  Ajayan PM., Thomas J. 2D TiS2 layers: a superior nonlinear optical  limiting material. Adv Opt Mater 2017; 5: 1700713. DOI: 10.1002/adom.201700713.
 
- Talib  M, Tripathi N, Sharma P, Hasan PMZ., Melaibari AA, Darwesh R, Arsenin AV,  Volkov VS, Yakubovsky DI, Kumar S, Pavelyev V, Mishra P. Development of  ultra-sensitive broadband photodetector: a detailed study on hidden  photodetection-properties of TiS2 nanosheets. J Mater Res Technol  2021; 14: 1243-1254. DOI: 10.1016/j.jmrt.2021.07.032.
 
- Pavelyev  V, Sharma P, Rymzhina A, Mishra P, Tripathi N. Advances in transition metal  dichalcogenides-based flexible photodetectors. J Mater Sci Mater Electron 2022;  33: 24397-24433. DOI: 10.1007/s10854-022-09204-7.
 
- Talib M, Tabassum R, Abid, Islam SS, Mishra P. Improvements in the  performance of a visible-NIR photodetector using horizontally aligned TiS3  Nanoribbons. ACS Omega 2019; 4(4): 6180-6191. DOI: 10.1021/acsomega.8b03067.
 
- Frisenda R, Giovanelli E, Mishra P, Gant P, Flores E, Sánchez C, Ares  JR, De Lara PD, Ferrer IJ, Pérez EM, Castellanos-Gomez A. Dielectrophoretic  assembly of liquid-phase-exfoliated TiS3 nanoribbons for  photodetecting applications. Chem Commun 2017; 53(45): 6164-6167. DOI: 10.1039/c7cc01845b.
 
- Zhang  W, Huang J-K, Chen C-H, Chang Y-H, Cheng Y-J, Li L-J. High-gain  phototransistors based on a CVD MoS2 monolayer. Adv Mater 2013;  25(25): 3456-3461. DOI: 10.1002/adma.201301244.
 
- Kwon J, Hong YK, Han G, Omkaram I, Choi W, Kim S, Yoon Y. Giant  photoamplification in indirect-bandgap multilayer MoS2  phototransistors with local bottom-gate structures. Adv Mater 2015; 27(13):  2224-2230. DOI: 10.1002/adma.201404367.
 
- Choi W, Cho MY, Konar A, Lee JH, Cha GB, Hong SC, Kim S, Kim J, Jena D,  Joo J, Kim S. High-detectivity multilayer MoS2 phototransistors with  spectral response from ultraviolet to infrared. Adv Mater 2012; 24(43):  5832-5836. DOI: 10.1002/adma.201201909.
 
- Pak Y, Park W, Mitra S, Devi AAS, Loganathan K, Kumaresan Y, Kim Y, Cho  B, Jung GY, Hussain MM, Roqan IS. Enhanced performance of MoS2  photodetectors by inserting an ALD-processed TiO2 interlayer. Small  2018; 14(5): 1703176. DOI: 10.1002/smll.201703176.
 
- Wang X, Huang L, Peng Y, Huo N, Wu K, Xia C, Wei Z, Tongay S, Li J.  Enhanced rectification, transport property and photocurrent generation of  multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res 2016;  9(2): 507-516. DOI: 10.1007/s12274-015-0932-6.
 
- Zhou X, Zhou N, Li C, Song H, Zhang Q, Hu X, Gan L, Li H, Lü J, Luo J,  Xiong J, Zhai T. Vertical heterostructures based on SnSe2/MoS2  for high performance photodetectors. 2D Materials 2017; 4(2): 025048. DOI:  10.1088/2053-1583/aa6422.
 
- Chen Y, Gan L, Li H, Ma Y, Zhai T. Achieving uniform monolayer  transition metal dichalcogenides film on silicon wafer via silanization  treatment: a typical study on WS2. Adv Mater 2017; 29(7): 1603550.  DOI: 10.1002/adma.201603550.
 
- Kang  X, Lan C, Li F, Wang W, Yip SP, Meng Y, Wang F, Lai Z, Liu C, Ho JC. Van der Waals PdSe2/WS2 heterostructures for  robust high-performance broadband photodetection from visible to infrared  optical communication band. Adv Opt Mater 2021; 9(7): 2001991. DOI:  10.1002/adom.202001991.
 
- Li K, Du C, Gao H, Yin T, Zheng L, Leng J, Wang W. Ultrafast and  polarization-sensitive ReS2/ReSe2 heterostructure  photodetectors with ambipolar photoresponse. ACS Appl Mater Interfaces 2022;  14(29): 33589-33597. DOI: 10.1021/acsami.2c09674.
 
- Hafeez M, Gan L, Li H, Ma Y, Zhai T. Chemical vapor deposition synthesis  of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property  and optoelectronic application. Adv Mater 2016; 28(37): 8296-8301. DOI:  10.1002/adma.201601977.
 
- Ko BM, Khan MF, Dastgeer G, Han GN, Khan MA, Eom J. Reconfigurable  carrier type and photodetection of MoTe2 of various thicknesses by  deep ultraviolet light illumination. Nanoscale Adv 2022; 4: 2744-2751. DOI:  10.1039/D1NA00881A.
 
- Wang Y, Zhang Y, Cheng Q, Pang J, Chu Y, Ji H, Gao J, Han Y, Han L, Liu  H, Zhang Y. Large area uniform PtSx synthesis on sapphire substrate  for performance improved photodetectors. Appl Mater Today 2021; 25: 101176.  DOI: 10.1016/j.apmt.2021.101176. 
- Li L,  Wang W, Chai Y, Li H, Tian M, Zhai T. Few-layered PtS2  phototransistor on h-BN with high gain. Adv Funct Mater 2017; 27(27): 1701011.  DOI: 10.1002/adfm.201701011.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20