(48-3) 07 * << * >> * Russian * English * Content * All Issues

Laser printing of certain pixels of graphene nanoribbons
M.S. Komlenok 1, P.V. Fedotov 1, P.A. Pivovarov 1, V.I. Konov 1

Prokhorov General Physics Institute of the Russian Academy of Sciences,
119991, Moscow, Russian Federation, Vavilova str. 38

 PDF, 2638 kB

DOI: 10.18287/2412-6179-CO-1331

Pages: 371-375.

Full text of article: Russian language.

Abstract:
A possibility of laser printing of graphene nanoribbon pixels while preserving the integrity of the structure and shape on the silicon substrate in accordance with the irradiated laser spot is demonstrated. To provide the transfer, a target consisting of a transparent sapphire plate and an absorbing thin titanium film (500 nm thick) coated with a film consisting of graphene nanoribbons is irradiated with a KrF excimer laser (λ=248 nm, τ=20 ns). Optimal conditions for laser irradiation are determined and a technique is developed for transferring a carbon nanomaterial from a growth nickel surface to a titanium film aimed at creating stronger bonds between the nanoribbons. Raman spectroscopy confirms the preservation of structural features of the synthesized atomically precise 7-atoms-wide graphene nanoribbons with an armchair edge during laser transfer.

Keywords:
graphene nanoribbons, laser-induced forward transfer, carbon nanomaterials, excimer lasers.

Citation:
Komlenok MS, Fedotov PV, Pivovarov PA, Konov VI. Laser printing of certain pixels of graphene nanoribbons. Computer Optics 2024; 48(3): 371-375. DOI: 10.18287/2412-6179-CO-1331.

Acknowledgements:
This work was supported by the Russian Science Foundation under project no. 18-72-10158. The authors thank A.F. Popovich for deposition of titanium films.

References:

  1. Kimouche A, Ervasti MM, Drost R, Halonen S, Harju A, Joensuu PM, Sainio J, Liljeroth P. Ultra-narrow metallic armchair graphene nanoribbons. Nat Commun 2015; 6: 10177. DOI: 10.1038/ncomms10177.
  2. Ruffieux P, Wang S, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Mullen K, Fasel R. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016; 531(7595): 489. DOI: 10.1038/nature17151.
  3. Talirz L, Ruffieux P, Fasel R. On-surface synthesis of atomically precise graphene nanoribbons. Adv Mater 2016; 28(29): 6222. DOI: 10.1002/adma.201505738.
  4. Bennett PB, Pedramrazi Z, Madani A, Chen Y-C, de Oteyza DG, Chen C, Fischer FR, Crommie MF, Bokor J. Bottom-up graphene nanoribbon field-effect transistors. Appl Phys Lett 2013; 103(25): 253114. DOI: 10.1063/1.4855116.
  5. Llinas JP, Fairbrother A, BorinBarin G, Shi W, Lee K, Wu S, Yong Choi B, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X, Mullen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R, Bokor J. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat Commun 2017; 8(1): 633. DOI: 10.1038/s41467-017-00734-x.
  6. Chen Z, Zhang W, Palma CA, Lodi Rizzini A, Liu B, Abbas A, Richter N, Martini L, Wang XY, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Klaui M, Candini A, Affronte M, Zhou C, De Renzi V, Del Pennino U, Barth JV, Rader HJ, Narita A, Feng X, Mullen K. Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J Am Chem Soc 2016; 138(47): 15488. DOI: 10.1021/jacs.6b10374.
  7. Liu M, Tjiu WW, Pan J, Zhang C, Gao W, Liu T. One-step synthesis of graphene nanoribbon-MnO2 hybrids and their all-solid-state asymmetric supercapacitors. Nanoscale 2014; 6(8): 4233. DOI: 10.1039/C3NR06650A.
  8. Li L, Raji AR, Fei H, Yang Y, Samuel EL, Tour JM. Bandgap engineering of coal-derived graphene quantum dots. ACS Appl Mater Interfaces 2013; 7(12): 7041-7048. DOI: 10.1021/acsami.5b01419.
  9. Sevincli H, Sevik C, Cain T, Cuniberti G. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Sci Rep 2013; 3: 1228. DOI: 10.1038/srep01228.
  10. Son YW, Cohen ML, Louie SG. Energy gaps in graphene nanoribbons. Phys Rev Lett 2007; 98: 089901. DOI: 10.1103/PhysRevLett.97.216803.
  11. Kimouche A, Ervasti MM, Drost R, Halonen S, Harju A, Joensuu PM, Sainio J, Liljeroth P. Ultra-narrow metallic armchair graphene nanoribbons. Nat Commun 2015; 6: 10177. DOI: 10.1038/ncomms10177.
  12. Delaporte P, Alloncle A-P. Laser-induced forward transfer: A high resolution additive manufacturing technology. Opt Laser Tech 2016; 78(A): 33-41. DOI: 10.1016/j.optlastec.2015.09.022.
  13. Papazoglou S, Zergioti I. Laser Induced Forward Transfer (LIFT) of nano-micro patterns for sensor applications. Microelectron Eng 2017; 182: 25-34. DOI: 10.1016/j.mee.2017.08.003.
  14. Smits ECP, Walter A, Leeuw DM, Asadi K. Laser induced forward transfer of graphene. Appl Phys Lett 2017; 111: 173101.
  15. Arutyunyan NR, Komlenok MS, Kononenko TV, Dezhkina MA, Popovich AF, Konov VI. Printing of single-wall carbon nanotubes via blister-based laser-induced forward transfer. Laser Phys 2019; 29: 026001.
  16. Dezhkina MA, Komlenok MS, Pivovarov PA, Rybin MG, Arutyunyan NR, Popovich AF, Obraztsova ED, Konov VI. Blister-based laser-induced forward transfer of 1D and 2D carbon nanomaterials. J Phys Conf Ser 2020; 1571: 012007.
  17. Komlenok MS, Pivovarov PA, Dezhkina MA, Rybin MG, Savin SS, Obraztsova ED, Konov VI. Printing of crumpled CVD Graphene via blister-based laser-induced forward transfer. Nanomaterials 2020; 10: 1103.
  18. Komlenok MS, Fedotov PV, Kurochitsky ND, Popovich AF, Pivovarov PA. Laser-induced forward transfer of graphene nanoribbons. Doklady Phys 2022; 67: 228-235. DOI: 10.1134/S102833582208002X.
  19. Blake P, Hill EW, Castro Neto AH. Making graphene visible. Appl Phys Lett 2007; 91: 063124. DOI: 10.1063/1.2768624.
  20. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010; 466: 470-473. DOI: 10.1038/nature09211.
  21. Huang H, Wei D, Sun J, Wong SL, Feng YP, Neto AH, Wee AT. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci Rep 2012; 2: 983. DOI: 10.1038/srep00983.
  22. Borin Barin G, Fairbrother A, Rotach L, Bayle M, Paillet M, Liang L, Meunier V, Hauert R, Dumslaff T, Narita A. Surface-synthesized graphene nanoribbons for room temperature switching devices: Substrate transfer and ex situ characterization. ACS Appl Nano Mater 2019; 2(4): 2184-2192. DOI: 10.1021/acsanm.9b00151.
  23. Zhou J, Dong J. Vibrational property and Raman spectrum of carbon nanoribbon. Appl Phys Lett 2007; 91: 173108. DOI: 10.1063/1.2800796.
  24. Gillen R, Mohr M, Thomsen C, Maultzsch J. Vibrational properties of graphene nanoribbons by first-principles calculations. Phys Rev B 2009; 80: 155418. DOI: 10.1103/PhysRevB.80.155418.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20