(48-4) 01 * << * >> * Russian * English * Content * All Issues

Dynamics of a two-qubit Tavis-Cummings model in the presence of an Ising-type interaction between qubits
E.K. Bashkirov 1

Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 990 kB

DOI: 10.18287/2412-6179-CO-1372

Pages: 475-482.

Abstract:
In this paper, we investigated the dynamics of entanglement of two qubits interacting non-resonantly with the thermal field of a one-mode lossless resonator, taking into account the Ising-type direct interaction between qubits. Based on the exact solution of the quantum Liouville equation, we found the density matrix of the system under consideration. With its help, the reduced qubit-qubit density matrix was calculated and the entanglement criteriоn of the two-qubit system, Pres-Horodeсki parameter, was found. It was shown that for the resonance model and separable initial states of qubits, the direct interaction of qubits leads to a significant increase in the maximum degree of their entanglement. It was also found that for the nonresonant interaction between qubits and field, the increase of the maximum degree of entanglement of qubits is much greater than that due to direct interaction. For the original entangled Bell-type state of the qubits, the direct interaction was found to lead to the vanishing of the effect of the sudden death of entanglement in the case of a resonant qubit-field interaction and, conversely, to an increase in this effect for a nonresonant interaction.

Keywords:
qubits, coplanar lossless resonator, resonant and nonresonant interaction, thermal field, entanglement, negativity, sudden death of entanglement.

Citation:
Bashkirov EK. Dynamics of a two-qubit Tavis-Cummings model in the presence of an Ising-type interaction between qubits. Computer Optics 2024; 48(4): 475-482. DOI: 10.18287/2412-6179-CO-1372.

References:

  1. Larson J. Dynamics of the Jaynes Cummings and Rabi models: old wine in new bottles. Phys Scr 2007; 76(2): 146-160. DOI: 10.1088/0031-8949/76/2/007.
  2. Gu X, Kockum AF, Miranowicz A, Liu Y-X, Nori F. Microwave photonics with superconducting quantum circuits. Phys Rep 2017; 718-719: 1-102. DOI: 10.1016/j.physrep.2017.10.002.
  3. Georgescu IM, Ashhab S, Nori F. Quantum simulation. Rev Mod Phys 2014; 88: 153–185. DOI: 10.1103/RevModPhys.86.153.
  4. Huang L, Wu D, Fan D, Zhu X. Superconducting quantum computing: a review. Sci China Inf Sci 2020; 63: 180501. DOI: 10.1007/s11432-020-2881-9.
  5. Chen J. Review on quantum communication and quantum computation. J Phys: Conf Ser 2021; 1865: 022008. DOI: 10.1088/1742-6596/1865/2/022008.
  6. Biamonte J, Faccin M, De Domenico M. Complex networks from classical to quantum. Commun Phys 2019; 2: 53. DOI: 10.1038/s42005-019-0152-6.
  7. Izmalkov A, Grajcar M, Il’ichev E, Wagner T, Meyer H-G, Smirnov AYu, Amin MHS, van den Brink AM, Zagoskin AM. Evidence for entangled states of two coupled flux qubits. Phys Rev Lett 2004; 93(3): 037003. DOI: 10.1103/PhysRevLett.93.037003.
  8. Grajcar M, Izmalkov A, der Ploeg S, Linzen S, Il’ichev E, Wagner Th, Hübner U, Meyer H-G, van den Brink AM, Uchaikin S, Zagoskin AM. Direct Josephson coupling between superconducting flux qubits. Phys Rev B 2005; 72(2): 020503. DOI: 10.1103/PhysRevB.72.020503.
  9. Izmalkov A, Grajcar M, Il'ichev E, Oukhanski N, Wagner Th, Meyer H-G, Krech W, Amin MH, van den Brink AM, Zagoskin AM. Observation of macroscopic Landau-Zener transitions in a superconducting device. Europhys Lett 2004; 65(6): 844-849. DOI: 10.1209/epl/i2003-10200-6.
  10. Donaire M, Muñoz-Castañeda JM, Nieto L. Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime. Phys Rev A 2017; 96(4): 042714. DOI: 10.1103/PhysRevA.96.042714.
  11. Nguyen T, Raimond JM, Sayrin C, Cortiñas R, Cantat-Moltrecht T, Assemat F, Dotsenko I, Gleyzes S, Haroche S, Roux G, Jolicoeur Th, Brune M. Towards quantum simulation with circular Rydberg atoms. Phys Rev X 2018; 8(1): 011032. DOI: 10.1103/PhysRevX.8.011032.
  12. Sorensen A, Molmer K. Spin-spin interaction and spin squeezing in an optical lattice. Phys Rev Lett 1999; 83(11): 2274. DOI: 10.1103/PhysRevLett.83.2274.
  13. Porras D, Cirac JI. Effective quantum spin systems with trapped ions. Phys Rev Lett 2004; 92(20): 20790. DOI: 10.1103/PhysRevLett.92.207901.
  14. Zagoskin A, Blais A. Superconducting qubits. La Physique au Canada 2007; 63: 215-227.
  15. Yu G-D, Li H-O, Cao G, Xiao M, Jiang H-W, Guo X-P. Tunable capacitive coupling between two semiconductor charge qubits. Nanotechnology 2016; 27(32): 324003. DOI: 10.1088/0957-4484/27/32/324003.
  16. Hita-Pérez M, Jaumà G, Pino M, García-Ripoll JJ. Ultrastrong capacitive coupling of flux qubits. Phys Rev Applied 2022; 17(1): 014028. DOI: 10.1103/PhysRevApplied.17.014028.
  17. Aguiar LS, Munhoz PP, Vidiella-Barranco A, Roversi JA. The entanglement of two dipole-dipole coupled in a cavity interacting with a thermal field. J Opt B Quantum Semiclassical Opt 2005; 7(12): S769-S771. DOI: 10.1088/1464-4266/7/12/049.
  18. Bashkirov EK, Mastyugin MS. Entanglement of two superconducting qubits interacting with two-mode thermal field. Computer Optics. 2013; 37(3): 278-285. DOI: 10.18287/0134-2452-2013-37-3-278-285.
  19. Bashkirov EK, Mastyugin MS. The influence of the dipole-dipole interaction and atomic coherence on the entanglement of two atoms with degenerate two-photon transitions. Opt Spectrosc 2014; 116(4): 630-634. DOI: 10.1134/S0030400X14040067.
  20. Bashkirov EK. Thermal entanglement between a Jaynes-Cummings atom and an isolated atom. Int J Theor Phys 2018; 57(12): 3761-3771. DOI: 10.1007/s10773-018-3888-y.
  21. Sadiek G, Al-Drees W, Shaglel S, Elhag H. Asymptotic entanglement sudden death in two atoms with dipole-dipole and Ising interactions coupled to a radiation field at non-zero detuning. Entropy 2021; 23(5): 629-650. DOI: 10.3390/e23050629.
  22. Plenio MB, Huelga SF, Beige A, Knight PL. Cavity-loss-induced generation of entangled atoms. Phys Rev A 1999; 59: 2468-2475. DOI: 10.1103/PhysRevA.59.2468.
  23. Kim MS, Lee J, Ahn D, Knight PL. Entanglement induced by a single-mode heat environment. Phys Rev A 2002; 65: 040101. DOI: 10.1103/PhysRevA.65.040101.
  24. Zhang B. Entanglement between two qubits interacting with a slightly detuned thermal field. Opt Commun 2010; 283: 4676-4679. DOI: 10.1016/j.optcom.2010.06.094.
  25. Mariantoni M, Wang H, Yamamoto T, et al. Implementing the quantum von Neumann architecture with superconducting circuits. Science 2011; 334(6052): 61-65. DOI: 10.1126/science.1208517.
  26. Chew Y, Tomita T, Mahesh TP, et al. Ultrafast energy exchange between two single Rydberg atoms on a nanosecond timescale. Nat Photon 2022; 16: 724-729. DOI: 10.1038/s41566-022-01047-2.
  27. Moskalenko IN, Simakov IA, Abramov NN, et al. High fidelity two-qubit gates on fluxoniums using a tunable coupler. npj Quantum Information 2022; 8: 130. DOI: 10.1038/s41534-022-00644-x.
  28. Sheldon S, Magesan E, Chow JM, Gambetta JM. Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys Rev A 2016; 93: 060302. DOI: 10.1103/PhysRevA.93.060302.
  29. Kjaergaard M, Schwartz ME, Braumuller JB, Krantz P, Wang JI-J, Gustavsson S, Oliver WD. Superconducting qubits: Current state of play. Annu Rev Condens Matter Phys 2020; 11: 369-395. DOI: 10.1146/annurev-conmatphys-031119-050605.
  30. Yu T, Eberly JH. Sudden death of entanglement. Science 2009; 323: 598-601. DOI: 10.1126/science.11673.
  31. Almeida MP, de Melo F, Hor-Meyll M, Salles A, Walborn SP, Souto Ribeiro PH, Davidovich L. Environment-induced sudden death of entanglement. Science 2007; 316(5824): 579-582. DOI: 10.1126/science.1139892.
  32. Decordi GL, Vidiella-Barranco A. Sudden death of entanglement induced by a minimal thermal environment. Opt Commun 2020; 475: 126233. DOI: 10.1016/j.optcom.2020.126233.
  33. Xie S, Younis D, Eberly JH. Evidence for unexpected robustness of multipartite entanglement against sudden death from spontaneous emission. Phys Rev Research 2023; 5: L032015. DOI: 10.1103/PhysRevResearch.5.L032015.
  34. Wang F, Hou P-Y, Huang Y-Y, Zhang W-G, Ouyang X-L, Wang X, Huang X-Z, Zhang H-L, He L, Chang X-Y, Duan L-M. Observation of entanglement sudden death and rebirth by controlling a solid-state spin bath. Phys Rev B 2018; 98: 064306. DOI: 10.1103/PhysRevB.98.064306.
  35. Shrikant U, Mandayam P. Quantum non-Markovianity: Overview and recent developments. Front Quantum Sci Technol 2023; 2: 1134583. DOI: 10.3389/frqst.2023.1134583.
  36. Bashkirov EK. Dynamics of entanglement of atoms with two-photon transitions induced by a thermal field. Computer Optics 2020; 44(2): 167-176. DOI: 10.18287/2412-6179-CO-595.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20