(48-4) 05 * << * >> * Russian * English * Content * All Issues

Real-time adaptive optics for high-power laser beam correction in the strong turbulence
A.L. Rukosuev 1, A.N. Nikitin 1, I.V. Galaktionov 1, Y.V. Sheldakova 1, A.V. Kudryashov 1,2

M.A. Sadovsii Institute of Geoshpere Dynamics RAS,
119334, Russia, Moscow, Leninsii prospect 38, bld. 1;
Moscow Polytechnical University,
107334, Russia, Moscow, Bolshaya Semenovskaya str. 38

 PDF, 1827 kB

DOI: 10.18287/2412-6179-CO-1352

Pages: 511-518.

Abstract:
A combined adaptive optical system designed to correct the wavefront of light radiation distorted by the influence of strong atmospheric turbulence is presented. The system consists of a beam position stabilizer and a fast adaptive optical system operating in real time. Stabilization of the beam position is carried out by two electronically controlled tilt mirrors. The control loop includes two quadrant sensors and an FPGA (field-programmable gate array) that closes the feedback loop. Using information received from Shack-Hartmann wavefront sensor, a bimorph-based adaptive mirror, controlled by another FPGA, is able to compensate for wavefront aberrations for up to 23-th Zernike polynomial in real time. The system was tested under the laboratory turbulence conditions created by a fan heater. The bandwidth of the artificial turbulence in the experiments did not exceed 100 Hz, which corresponds to the average statistical state of the real atmosphere. Results of the correction of the wave front distorted by the artificial turbulence are presented. It is shown that when only a bimorph corrector is used, the value of wavefront tilt angles increases. This presents a certain problem, since a significant part of the turbulence energy falls on the wave front tilts. To address this problem, it is proposed additionally using a system for stabilizing the position of the light beam.

Keywords:
adaptive optical system, atmospheric turbulence, wavefront corrector, Zernike polynomials, computer optics.

Citation:
Rukosuev AL, Nikitin AN, Galaktionov IV, Sheldakova JV, Kudryashov AV. Real-time adaptive optics for high-power laser beam correction in the strong turbulence. Computer Optics 2024; 48(4): 511-518. DOI: 10.18287/2412-6179-CO-1352.

Acknowledgements:
Work on the stabilization of the laser beam (Chapter 1) was funded by the Russian Science Foundation under grant No. 20-19-00597, experiments on the study of artificial turbulence (Chapter 2) were funded from the state assignment of the Ministry of Science and Higher Education of the Russian Federation (No. 122032900183-1), experiments with adaptive mirrors were funded under the program of the National Center for Physics and Mathematics, Project “Physics of high energy density”. Stage 2023-2025.

References:

  1. Lu M, Bagheri M, James AP, Phung T. Wireless charging techniques for UAVs: a review, reconceptualization, and extension. IEEE Access 2018; 6: 29865-29884. DOI: 10.1109/ACCESS.2018.2841376.
  2. Wang C, Ma Z. Design of wireless power transfer device for UAV. 2016 IEEE Int Conf on Mechatronics and Automation 2016: 2449-2454, DOI: 10.1109/ICMA.2016.7558950.
  3. Chittoor PK, Chokkalingam B, Mihet-Popa L. A review on UAV wireless charging: Fundamentals, applications, charging techniques and standards. IEEE Access 2021; 9: 69235-69266. DOI: 10.1109/ACCESS.2021.3077041.
  4. Landis GA, Westerlund H. Laser beamed power – Satellite demonstration applications. NASA Contractor Report 190793 1992: IAF-92-0600.
  5. Huang Q, Liu D, Chen Y, Wang Y, Tan J, Chen W, Liu J, Zhu N. Secure free-space optical communication system based on data fragmentation multipath transmission technology. Opt Express 2018; 26(10): 13536-13542. DOI: 10.1364/OE.26.013536.
  6. Nafria V, Han X, Djordjevic I. Improving free-space optical communication with adaptive optics for higher order modulation. Proc SPIE 2020; 11509: 115090K. DOI: 10.1117/12.2568713.
  7. Vorontsov M, Weyrauch T, Carhart G, Beresnev L. Adaptive optics for free space laser communications. In Book: Lasers, sources and related photonic devices, OSA technical digest series (CD). Optica Publishing Group; 2010: LSMA1. DOI: 10.1364/LSC.2010.LSMA1
  8. Weyrauch T, Vorontsov M. Free-space laser communications with adaptive optics: Atmospheric compensation experiments. J Optic Comm Rep 2004; 1: 355-379. DOI: 10.1007/s10297-005-0033-5.
  9. Lema GG. Free space optics communication system design using iterative optimization. J Opt Commun 2020; 44(s1): s1205-s1216. DOI: 10.1515/joc-2020-0007.
  10. Zhang Y, Wang Y, Deng Y, Du A, Liu J. Design of a free space optical communication system for an unmanned aerial vehicle command and control link. Photonics 2021; 8(5):163. DOI: 10.3390/photonics8050163.
  11. Majumdar A. Fundamentals of free-space optical (FSO) communication system. In Book: Majumdar A. Advanced free space optics (FSO). New York, NY: Springer; 2015: 1-20. DOI: 10.1007/978-1-4939-0918-6_1.
  12. Nikitin A, Galaktionov I, Sheldakova J, Kudryashov A, Samarkin V, Rukosuev A. Focusing laser beam through pinhole using bimorph deformable mirror. Proc SPIE 2019; 10904: 109041I. DOI: 10.1117/12.2510134.
  13. Wang R, et al. Demonstration of horizontal free-space laser communication with the effect of the bandwidth of adaptive optics system. Opt Commun 2019; 431: 167-173. DOI: 10.1016/j.optcom.2018.09.038.
  14. Rukosuev A, Belousov V, Galaktionov I, Kudryashov A, Nikitin A, Samarkin V, Sheldakova J. 1.5 kHz adaptive optical system for free-space communication tasks. Proc SPIE 2020; 11272: 112721G.DOI: 10.1117/12.2548337.
  15. Bennet Fr, Conan R, D'Orgeville C, Dawson M, Paulin N, Price I, Rigaut F, Ritchie I, Smith C, Uhlendorf K. Adaptive optics for laser space debris removal. Proc SPIE 2012; 8447: 844744. DOI: 10.1117/12.925773.
  16. Phipps C, et al. Removing orbital debris with lasers. Adv Space Res 2012; 49(9): 1283-1300. DOI: 10.1016/j.asr.2012.02.003.
  17. Shen S, Jin X, Hao C. Cleaning space debris with a space-based laser system. Chin J Aeronaut 2014; 27(4): 805-811. DOI: 10.1016/j.cja.2014.05.002.
  18. Barros R, Keary S. Experimental setup for investigation of laser beam propagation along horizontal urban path. Proc SPIE 2014; 9242: 92421L.DOI: 10.1117/12.2070694.
  19. Mata-Calvo R. Transmitter diversity verification on Artemis geostationary satellite. Proc SPIE 2014; 8971: 897104. DOI: 10.1117/12.2036554.
  20. Mosavi N, Marks B, Boone B, Menyuk C. Optical beam spreading in the presence of both atmospheric turbulence and quartic aberration. Proc SPIE 2014; 8971: 897103. DOI: 10.1117/12.2033561.
  21. Murty SSR. Laser beam propagation in atmospheric turbulence. Proc Indian Acad Sci 1979; 2: 179-195. DOI: 10.1007/BF02845031.
  22. Kwiecień J. The effects of atmospheric turbulence on laser beam propagation in a closed space–An analytic and experimental approach. Opt Commun 2019; 433: 200-208. DOI: 10.1016/j.optcom.2018.09.022.
  23. Searles S, Hart G, Dowling J, Hanley S. Laser beam propagation in turbulent conditions. Appl Opt 1991; 30: 401-406. DOI: 10.1364/AO.30.000401.
  24. Gareth D, Naven C. Experimental analysis of a laser beam propagating in angular turbulence. Open Physics 2022; 20(1): 402-415. DOI: 10.1515/phys-2022-0038.
  25. Summerer L, Purcell O. Concepts for wireless energy transmission via laser. J Br Interplanet Soc 2005; 58.
  26. Fahey T, Islam M, Gardi A, Sabatini R. Laser beam atmospheric propagation modelling for aerospace LIDAR applications. Atmosphere 2021; 12(7): 918. DOI: 10.3390/atmos12070918.
  27. Zohuri B. Atmospheric propagation of high-energy laser beams. In: Zohuri B. Directed energy weapons. Cham: Springer; 2016: 379-414. DOI: 10.1007/978-3-319-31289-7_8.
  28. Shuto Y. Effect of water and aerosols absorption on laser beam propagation in moist atmosphere at eye-safe wavelength of 1.57 µm. J Electr Electron Eng 2023; 11(1): 15-22. DOI: 10.11648/j.jeee.20231101.12.
  29. Rosen L, Ipser J. High energy laser beam scattering by atmospheric aerosol aureoles. Proc SPIE 1989; 1060. DOI: 10.1117/12.951743.
  30. Oosterwijk A, Heikamp S, Manders-Groot A, Lex A, Eijk J. Comparison of modelled atmospheric aerosol content and its influence on high-energy laser propagation. Proc SPIE 2019; 11133: 111330C. DOI: 10.1117/12.2529949.
  31. Directed energy weapons are real ... and disruptive. PRISM 2020; 8(3): 37-46.
  32. Buck AL. Effects of the atmosphere on laser beam propagation. Appl Opt 1967; 6: 703-708.
  33. Galaktionov I, Kudryashov A, Sheldakova J, Nikitin A, Samarkin V. Laser beam focusing through the atmosphere aerosol. Proc SPIE 2017; 10410: 104100M. DOI: 10.1117/12.2276180.
  34. Singh S, Mishra SK, Mishra AK, Ring Pearcey vortex beam dynamics through atmospheric turbulence. J Opt Soc Am B 2023; 40: 2287-2295. DOI: 10.1364/JOSAB.494677.
  35. Thobois L, Cariou J.P., Gultepe I. Review of lidar-based applications for aviation weather. Pure Appl. Geophys. 2019; 176(4/5), 1959–1976. DOI: 10.1007/s00024-018-2058-8.
  36. Lylova A, Kudryashov A, Sheldakova J, Borsoni G. The real-time atmospheric turbulence modeling and compensation with the use of adaptive optics. Proc SPIE 2015; 9641: 96410K. DOI: 10.1117/12.2194980.
  37. Tatarski VI. Wave propagation in a turbulent medium. Dover Publications; 2016. ISBN: 0486810291.
  38. Andrews LC, Phillips RL. Laser beam propagation through random media. 2nd ed. Bellingham: SPIE Press; 2005. DOI: 10.1117/3.626196.
  39. Rukosuev AL, Kudryashov AV, Lylova AN, Samarkin VV, Sheldakova YuV. Adaptive optical system for real-time wavefront correction. Atmospheric and Oceanic Optics 2015; 28(4): 381-386.
  40. Rukosuev A, Nikitin A, Belousov V, Sheldakova J, Toporovsky V, Kudryashov A. Expansion of the laser beam wavefront in terms of Zernike polynomials in the problem of turbulence testing. Appl Sci 2021; 11(24): 12112. DOI: 10.3390/app112412112.
  41. Wyant JC, Creath K. Basic wavefront aberration theory for optical metrology. Proc of Applied Optics and Optical Engineering 1992: 27-39.
  42. Niu K, Tian C. Zernike polynomials and their applications. J Opt 2022; 24(12): 123001.
  43. Kudryashov A, Rukosuev A, Nikitin A, Galaktionov I, Sheldakova J. Real-time 1.5 kHz adaptive optical system to correct for atmospheric turbulence. Opt Express 2020; 28(25): 37546-37552. DOI: 10.1364/OE.409201.
  44. Toporovskii V, Skvortsov A, Kudryashov A, Samarkin V, Sheldakova Yu, Pshonkin D. Flexible bimorphic mirror with high density of control electrodes for correcting wavefront aberrations. J Opt Technol 2019; 86: 32-38.
  45. Dai GM, Mahajan VN. Orthonormal polynomials in wavefront analysis: error analysis. Appl. Opt. 47, 3433-3445 2008(8). DOI: 10.1364/AO.47.003433.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20