(48-4) 06 * << * >> * Russian * English * Content * All Issues
Polarization Möbius strip at the tight focus of a generalized Poincaré beam
V.V. Kotlyar 1,2, A.A. Kovalev 1,2, A.M. Telegin 2
1 Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
2 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
PDF, 1612 kB
DOI: 10.18287/2412-6179-CO-1487
Pages: 519-524.
Abstract:
Based on the Richards-Wolf formalism, we investigate tight focusing of a generalized Poincaré beam. Analytical expressions are derived for all components of the electric field strength vector in the focal plane. For superposition of a right-handed circularly polarized plane wave with a left-handed circularly polarized optical vortex with topological charge –1, we obtain expressions for the intensity distribution and the longitudinal component of the spin angular momentum vector at the tight focus. We demonstrate both theoretically and numerically that the initial beam has topological charge –1/2 and, in the center of the focal plane, there is a C-point (a point with circular polarization which makes a C-line along the optical axis) with the singularity index of –1/2 (star), whereas the vector of major axis of the polarization ellipse makes along a certain-radius circle around the optical axis a single-side polarization Möbius stripe of the order –3/2, which has three half-turnovers and one stitching, where two opposite major axis vectors of the polarization ellipse meet.
Keywords:
polarization Möbius stripe, generalized Poincaré beam, tight focusing, Richards-Wolf formulae, spin angular momentum, polarization singularity index.
Citation:
Kotlyar VV, Kovalev AA, Telegin AM. Polarization Möbius strip at the tight focus of a generalized Poincaré beam. Computer Optics 2024; 48(4): 519-524. DOI: 10.18287/2412-6179-CO-1487.
Acknowledgements:
This work was supported by the Russian Science Foundation (Project No. 22-12-00137, theory). This work was also performed within the State assignment of NRC "Kurchatov Institute" (numerical simulation).
References:
- Freund I. Multitwist optical Möbius strips. Opt Lett 2010; 35(2): 148-150. DOI: 10.1364/OL.35.000148.
- Bauer T, Banzer P, Karimi E, Orlov S, Rubano A, Marrucci L, Santomato E, Boyd RW, Leuchs G. Observation of optical polarization Möbius strips. Science 2015; 347(6225): 964-966. DOI: 10.1126/science.1260635.
- Freund I. Cones, spirals, and Möbius strips, in elliptically polarized light. Opt Commun 2005; 249(1-3): 7-22. DOI: 10.1016/j.optcom.2004.12.052.
- Freund I. Optical Möbius strips, twisted ribbons, and the index theorem. Opt Lett 2011; 36(23): 4506-4508. DOI: 10.1364/OL.36.004506.
- Freund I. Optical Möbius strips and twisted ribbon cloaks. Opt Lett 2014; 39(4): 727-730. DOI: 10.1364/OL.39.000727.
- Galvez EJ, Dutta I, Beach K, Zeosky JJ, Jones JA, Khajavi B. Multitwist Möbius strips and twisted ribbons in the polarization of paraxial light beams. Sci Rep 2017; 7: 13653. DOI: 10.1038/s41598-017-13199-1.
- Bauer T, Neugebauer M, Leuchs G, Banzer P. Optical polarization Möbius strips and points of purely transverse spin density. Phys Rev Lett 2016; 117: 013601. DOI: 10.1103/PhysRevLett.117.013601.
- Wan C, Zhan Q. Generation of exotic optical polarization Möbius strips. Opt Express 2019; 27(8): 11516-11524. DOI: 10.1364/OE.27.011516.
- Tekce K, Otte E, Denz C. Optical singularities and Möbius strip arrays in tailored non-paraxial light fields. Opt Express 2019; 27(21): 29685-29696. DOI: 10.1364/OE.27.029685.
- Freund I. Polarization Möbius strips on elliptical paths in three-dimensional optical fields. Opt Lett 2020; 45(12): 3333-3336. DOI: 10.1364/OL.392331.
- Pang X, Hu M, Liu W, Zhao X. Photonics wheels and polarization Möbius strips in highly-confined trigonometric beams. IEEE Photonics J 2022; 14(5): 6553708. DOI: 10.1109/JPHOT.2022.3205640.
- Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc R Soc Lond A 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
- Beckley AM, Brown TG, Alonso MA. Full Poincaré beams. Opt Express 2010; 18(10): 10777-10785. DOI: 10.1364/OE.18.010777.
- Koltyar VV, Nalimov AG, Stafeev SS. Exploiting the circular polarization of light to obtain a spiral energy flow at the subwavelength focus. J Opt Soc Am B 2019; 36(10): 2850-2855. DOI: 10.1364/JOSAB.36.002850.
- Kovalev AA, Kotlyar VV. Spin Hall effect of double-index cylindrical vector beams in a tight focus. Micromachines 2023; 14(2): 494. DOI: 10.3390/mi14020494.
- Berry MV. Index formulae for singular lines of polarization. J Opt A-Pure Appl Opt 2004; 6: 675-678. DOI: 10.1088/1464-4258/6/7/003.
- Kotlyar VV, Stafeev SS, Kovalev AA, Zaitsev VD. Spin Hall effect before and after the focus of a high-order cylindrical vector beam. Appl Sci 2022; 12(23): 12218. DOI: 10.3390/app122312218.
- Kotlyar VV, Stafeev SS, Kozlova ES, Butt MA. High-order orbital and spin Hall effects at the tight focus of laser beams. Photonics 2022; 9(12): 970. DOI: 10.3390/photonics9120970.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20