(48-5) 01 * << * >> * Russian * English * Content * All Issues
Energy rule for enhancing the spin Hall effect in superposition of axisymmetric beams with cylindrical and linear polarization
A.A. Kovalev 1,2, V.V. Kotlyar 1,2
1 Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
2 Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34
PDF, 1556 kB
DOI: 10.18287/2412-6179-CO-1480
Pages: 649-654.
Full text of article: Russian language.
Abstract:
We study the spin angular momentum of a superposition of two vector light beams radial symmetry, one has cylindrical polarization and another – linear. Both beams can have an arbitrary radial shape. An analytical expression is obtained for the spin angular momentum and two its properties are proven. The first one is that changing weight coefficients of the superposition does not changes the shape of the spin angular momentum density distribution, whereas the intensity shape can change. The second property is that the maximal spin angular momentum density is achieved when both constituent beams in the superposition have equal energy.
Keywords:
paraxial vector beam, cylindrical polarization, linear polarization, spin Hall effect, spin angular momentum.
Citation:
Kovalev AA, Kotlyar VV. Energy rule for enhancing the spin Hall effect in superposition of axisymmetric beams with cylindrical and linear polarization. Computer Optics 2024; 48(5): 649-654. DOI: 10.18287/2412-6179-CO-1480.
Acknowledgements:
This work was financially supported by the Russian Science Foundation under project No. 23-12-00236 (Theory and numerical simulation). This work was also performed within the State assignment of NRC "Kurchatov Institute" (Introduction and Conclusion).
References:
- Angelsky OV, Bekshaev AY, Maksimyak PP, Maksimyak AP, Hanson SG, Zenkova CY. Orbital rotation without orbital angular momentum: Mechanical action of the spin part of the internal energy flow in light beams. Opt Express 2012; 20: 3563-3571. DOI: 10.1364/OE.20.003563.
- Onoda M, Murakami S, Nagaosa N. Hall effect of light. Phys Rev Lett 2004; 93: 083901. DOI: 10.1103/PhysRevLett.93.083901.
- Leyder C, Romanelli M, Karr JP, Giacobino E, Liew TCH, Glazov MM, Kavokin AV, Malpuech G, Bramati A. Observation of the optical spin Hall effect. Nat Phys 2007; 3(9): 628-631. DOI: 10.1038/nphys676.
- Bliokh KYu. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. Phys Rev Lett 2006; 97: 043901. DOI: 10.1103/PhysRevLett.97.043901.
- Zhang J, Zhou XX, Ling XH, Chen SZ, Luo HL, Wen SC. Orbit-orbit interaction and photonic orbital Hall effect in reflection of a light beam. Chin Phys B 2014; 23(6): 064215. DOI: 10.1088/1674-1056/23/6/064215.
- Fu S, Guo C, Liu G, Li Y, Yin H, Li Z, Chen Z. Spin-orbit optical Hall effect. Phys Rev Lett 2019; 123(24): 243904. DOI: 10.1103/PhysRevLett.123.243904.
- Li H, Ma Ch, Wang J, Tang M, Li X. Spin-orbit Hall effect in the tight focusing of a radially polarized vortex beam. Opt Express 2021; 29(24): 39419-39427. DOI: 10.1364/OE.443271.
- Kotlyar VV, Stafeev SS, Kovalev AA, Zaitsev VD. Spin Hall effect before and after the focus of a high-order cylindrical vector beam. Appl Sci 2022; 12(23): 12218. DOI: 10.3390/app122312218.
- Kovalev AA, Kotlyar VV, Stafeev SS. Spin Hall effect in the paraxial light beams with multiple polarization singularities. Micromachines 2023; 14(4): 777. DOI: 10.3390/mi14040777.
- Angelsky OV, Mokhun II, Bekshaev AY, Zenkova CY, Zheng J. Polarization singularities: Topological and dynamical aspects. Front Phys 2023; 11: 1147788. DOI: 10.3389/fphy.2023.1147788.
- Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1: 1-57. DOI: 10.1364/AOP.1.000001.
- Kogelnik H, Li T. Laser beams and resonators. Appl Opt 1966; 5: 1550-1567. DOI: 10.1364/AO.5.001550.
- Gori F, Guattari G, Padovani C. Bessel-Gauss beams. Opt Commun 1987; 64(6): 491-495. DOI: 10.1016/0030-4018(87)90276-8.
- Karimi E, Zito G, Piccirillo B, Marrucci L, Santamato E. Hypergeometric-Gaussian beams. Opt Lett 2007; 32(21): 3053-3055. DOI: 10.1364/OL.32.003053.
- Hebri D, Rasouli S. Combined half-integer Bessel-like beams: a set of solutions of the wave equation. Phys Rev A 2018; 98(4): 043826. DOI: 10.1103/PhysRevA.98.043826.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20