(48-5) 08 * << * >> * Russian * English * Content * All Issues

Amplification of UV radiation and gain mechanisms in ZnO films with loose-packed structure
L.A. Zadorozhnaya 1, A.P. Tarasov 1, A.S. Lavrikov 1, V.M. Kanevsky 1

Shubnikov Institute of Crystallography,
Federal Scientific Research Centre "Crystallography and Photonics", NRC "Kurchatov Institute"
119333, Moscow, Russia, Leninskiy pr. 59

 PDF, 1776 kB

DOI: 10.18287/2412-6179-CO-1414

Pages: 696-704.

Full text of article: English language.

Abstract:
The modern demands for miniaturization of optoelectronic devices, in particular, for the UV range, are inextricably linked with the improvement of fabrication technologies for the corresponding photonic nano/micro objects and the study of their radiative properties. In this work, the method of pyrolytic carbothermal synthesis, which is a modification of the thermal evaporation method, was used to fabricate microcrystalline ZnO films with laser properties. The influence of the size and packing type of ZnO microcrystallites in the films on their emissive properties were revealed. The films with relatively large microcrystallites (10–15 µm in size on average) were found to exhibit UV amplified spontaneous emission at room temperature. The possibility of additional enhancement of this emission and its two-threshold behavior in loose-packed regions of such films were found for the first time. It was shown that the observed phenomenon is due to the competition between two gain mechanisms, which are assumed to arise predominantly in different regions of microcrystallites as a result of exciton-phonon and exciton-electron interaction processes. As the temperature decreases, the dominant gain mechanism gradually changes to exciton-exciton scattering, regardless of the type of film structure. The results obtained open up the possibilities of the thermal evaporation synthesis to a wider extent and can be useful in interpreting the optical gain mechanisms in ZnO micro- and nanostructures.

Keywords:
ZnO film, loose-packed structure, UV laser, amplified spontaneous emission, emission enhancement, exciton gain.

Citation:
Zadorozhnaya LA, Tarasov AP, Lavrikov AS, Kanevsky VM. Amplification of UV radiation and gain mechanisms in ZnO films with loose-packed structure. Computer Optics 2024; 48(5): 696-704. DOI: 10.18287/2412-6179-CO-1414.

Acknowledgements:
The study was supported by the grant of the Russian Science Foundation (grant No. 23-29-00535, https://rscf.ru/en/project/23-29-00535/).

References:

  1. Capper P, Kasap SO, Willoughby A. Zinc oxide materials for electronic and optoelectronic device applications. New York: John Wiley and Sons; 2011. DOI: 10.1002/9781119991038.
  2. Rong P, Ren S, Yu Q. Fabrications and applications of ZnO nanomaterials in flexible functional devices-a review. Crit Rev Analyt Chem 2019; 49: 336-349. DOI: 10.1080/10408347.2018.1531691.
  3. Borysiewicz MA. ZnO as a functional material, a review. Crystals 2019; 9: 505. DOI: 10.3390/cryst9100505.
  4. Murzin SP, Kazanskiy NL. Arrays formation of zinc oxide nano-objects with varying morphology for sensor applications. Sensors 2020; 20: 5575. DOI: 10.3390/s20195575.
  5. Murzin SP. Improvement of thermochemical processes of laser-matter interaction and optical systems for wavefront shaping. Appl Sci 2022; 12: 12133. DOI: 10.3390/app122312133.>
  6. Murzin SP, Kazanskiy NL, Osipov S. Formation of zinc oxide nanoobjects arrays for electrically switchable diffraction gratings. Proc SPIE 2022; 12295: 122950F. DOI: 10.1117/12.2631728.
  7. Özgür Ü, Hofstetter D, Morkoc H. ZnO devices and applications: a review of current status and future prospects. Proc IEEE 2010; 98(7): 1255-1268. DOI: 10.1109/JPROC.2010.2044550.
  8. Versteegh MA, Vanmaekelbergh D, Dijkhuis JI. Room-temperature laser emission of ZnO nanowires explained by many-body theory. Phys Rev Lett 2012; 108: 157402. DOI: 10.1103/PhysRevLett.108.157402.
  9. Xu C, Dai J, Zhu G, Zhu G, Lin Y, Li J, Shi Z. Whispering-gallery mode lasing in ZnO microcavities. Laser Photonics Rev 2014; 8: 469-494. DOI: 10.1002/lpor.201300127.
  10. Klingshirn CF. Semiconductor optics. 4th ed. Berlin: Springer; 2012. ISBN: 9783642283628.
  11. Galdámez-Martinez A, Santana G, Güell F, Martínez-Alanis PR, Dutt A. Photoluminescence of ZnO nanowires: a review. Nanomaterials 2020; 10: 857. DOI: 10.3390/nano10050857.
  12. Aspoukeh PK, Barzinjy AA, Hamad SM. Synthesis, properties and uses of ZnO nanorods: a mini review. Int Nano Lett 2022; 12: 153-168. DOI: 10.1007/s40089-021-00349-7.
  13. Li LE, Demianets LN. Room-temperature excitonic lasing in ZnO tetrapod-like crystallites. Opt Mater 2008; 30: 1074-1078. DOI: 10.1016/j.optmat.2007.05.013.
  14. Demyanets LN, Li LE, Lavrikov AS, Nikitin SV. Nanocrystalline zinc oxide: pyrolytic synthesis and spectroscopic characteristics. Crystallogr Rep 2010; 55: 142-148. DOI: 10.1134/S1063774510010219.
  15. Tarasov AP, Muslimov AE, Kanevsky VM. Excitonic mechanisms of stimulated emission in low-threshold ZnO microrod lasers with whispering gallery modes. Materials 2022; 15: 8723. DOI: 10.3390/ma15248723.
  16. Tarasov AP, Briskina CM, Markushev VM, Zadorozhnaya LA, Lavrikov AS, Kanevsky VM. Analysis of laser action in ZnO tetrapods obtained by carbothermal synthesis. JETP Lett 2019; 110: 739-743. DOI: 10.1134/S0021364019230115.
  17. Galli G, Coker JE. Epitaxial ZnO on sapphire. Appl Phys Lett 1970; 16: 439-441. DOI: 10.1063/1.1653058.
  18. Nickel NH, Terukov E. Zinc oxide – a material for micro-and optoelectronic applications. Springer Science & Business Media; 2005.
  19. Zadorozhnaya LA, Tarasov AP, Volchkov IS, Muslimov AE, Kanevsky VM. Morphology and luminescence of flexible free-standing ZnO/Zn composite films grown by vapor transport synthesis. Materials 2022; 15: 8165. DOI: 10.3390/ma15228165.
  20. Zhang Z, Yates JT Jr. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 2012; 112: 5520-5551. DOI: 10.1021/cr3000626.
  21. Wang L, Giles NC. Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy. J Appl Phys 2003; 94: 973-978. DOI: 10.1063/1.1586977.
  22. Klingshirn C, Fallert J, Zhou H, Sartor J, Thiele C, Maier-Flaig F, Schneider D, Kalt H. 65 years of ZnO research – old and very recent results. Phys Status Solidi 2010; 247: 1424-1447. DOI: 10.1002/pssb.200983195.
  23. Foreman JV, Simmons JG, Baughman WE, Liu J, Everitt JO. Localized excitons mediate defect emission in ZnO powders. J Appl Phys 2013; 113: 133513. DOI: 10.1063/1.4798359.
  24. Tarasov AP, Venevtsev ID, Muslimov AE, Zadorozhnaya LA, Rodnyi PA, Kanevsky VM. Luminescent properties of a ZnO whisker array as a scintillation detector material. Quantum Electron 2021; 51: 366-370. DOI: 10.1070/QEL17534.
  25. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H. A comprehensive review of ZnO materials and devices. J Appl Phys 2005; 98: 41301. DOI: 10.1063/1.1992666.
  26. Zimmler MA, Capasso F, Müller S, Ronning C. Optically pumped nanowire lasers: invited review. Semicond Sci Tech 2010; 25: 024001. DOI: 10.1088/0268-1242/25/2/024001.
  27. Klingshirn C. The luminescence of ZnO under high one-and two-quantum excitation. Phys Status Solidi B 1975; 71: 547-556. DOI: 10.1002/pssb.2220710216.
  28. Matsuzaki R, Soma H, Fukuoka K, Kodama K, Asahara A, Suemoto T, Adachi Y, Uchino T. Purely excitonic lasing in ZnO microcrystals: Temperature-induced transition between exciton-exciton and exciton-electron scattering. Phys Rev B 2017; 96: 125306. DOI: 10.1103/PhysRevB.96.125306.
  29. Tempel JS, Veit F, Aßmann M, Kreilkamp LE, Rahimi-Iman A, Löffler A, Höfling S, Reitzenstein S, Worschech L, Forchel A, Bayer M. Characterization of two-threshold behavior of the emission from a GaAs microcavity. Phys Rev B 2012; 85: 075318. DOI: 10.1103/PhysRevB.85.075318.
  30. Niyuki R, Fujiwara H, Nakamura T, Ishikawa Y, Koshizaki N, Tsuji T, Sasaki K. Double threshold behavior in a resonance-controlled ZnO random laser. Apl Photonics 2017; 2: 036101. DOI: 10.1063/1.4974334.
  31. Moss TS. Theory of intensity dependence of refractive index. Phys Status Solidi 1980; 101: 555-561. DOI: 10.1002/pssb.2221010214.
  32. Kamat PV, Dimitrijevic NM, Nozik AJ. Dynamic Burstein-Moss shift in semiconductor colloids. J Phys Chem 1989; 93: 2873-2875. DOI: 10.1021/j100345a003.
  33. Klingshirn C, Hauschild R, Fallert J, Kalt H. Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing. Phys Rev B 2007; 75: 115203. DOI: 10.1103/PhysRevB.75.115203.
  34. Koch SW, Haug H, Schmieder G, Bohnert W, Klingshirn C. Stimulated intrinsic recombination processes in II–VI compounds. Phys Status Solidi 1978; 89: 431-440. DOI: 10.1002/pssb.2220890212.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20