(48-5) 07 * << * >> * Russian * English * Content * All Issues
  
Comparative performance evaluation of classical methods and a deep learning approach for temperature prediction in fiber optic specklegram sensors
 F.J. Vélez 1,2, J.D. Arango 3, V.H. Aristizábal 1, C.A. Trujillo 2, J. Herrera-Ramírez 3
 1 Facultad de Ingeniería, Universidad Cooperativa de Colombia,
     Calle 50 N° 41 – 34, 050010, Medellín, Colombia;
     2 School of Applied Sciences and Engineering, EAFIT University,
     Carrera 49 N° 7 Sur –50, 050022, Medellín, Colombia;
     3 Facultad de Exact and Applied Sciences, Instituto Tecnológico Metropolitano,
     Calle 73 N° 26A – 354, 050054, Medellín, Colombia
 PDF, 2277 kB
  PDF, 2277 kB
DOI: 10.18287/2412-6179-CO-1467
Pages: 689-695.
Full text of article: English language.
 
Abstract:
In this study, an algorithm based on convolutional neural networks is employed as an interrogation method for a fiber specklegram sensor. This algorithm is compared with conventional interrogation methods, including correlation between images, measurement of optical power, and radial moments. Fiber specklegram sensors have room for improvement as conventional methods only consider a single characteristic of the specklegram for variable prediction, thus failing to leverage the full spectrum of information within the specklegram. Consequently, the approach put forth here introduces a convolutional neural network for the extraction of specklegram features, accompanied by an artificial neural network for variable regression. The specklegrams used in this investigation are obtained through simulating temperature disturbances in a multimode fiber using the Finite Elements Method. The results reveal prediction RMSE errors ranging from 10.26°C for the first radial moment to 1.42°C for the proposed algorithm. These findings underscore the effectiveness of the proposed strategy in enhancing sensor performance and robustness, all while upholding their cost-efficiency.
Keywords:
fiber specklegram sensors; finite element method; interrogation methods; deep learning; convolutional neural network.
Citation:
  Vélez FJ, Arango JD, Aristizábal VH, Trujillo CA, Herrera-Ramírez J. Comparative performance evaluation of classical methods and a deep learning approach for temperature prediction in fiber optic specklegram sensors. Computer Optics 2024; 48(5): 689-695. DOI: 10.18287/2412-6179-CO-1467.
Acknowledgements:
  This  work was partially funded by Universidad Cooperativa de Colombia (UCC) (INV3612);  Instituto Tecnológico Metropolitano (ITM) (P20222), EAFIT University  and MINCIENCIAS National Doctorates program.
References:
  - Cuevas AR, Fontana M,  Rodriguez-Cobo L, Lomer M, Lopez-Higuera JM. Machine learning for turning optical fiber specklegram sensor into a  spatially resolved sensing system. Proof of  concept. J Light Technol 2018; 36(17): 3733-3738. DOI: 10.1109/JLT.2018.2850801.
 
- Efendioglu HS. A review  of fiber-optic modal modulated sensors: Specklegram and modal power  distribution sensing. IEEE Sens J 2017; 17(7): 2055-2064. DOI:  10.1109/JSEN.2017.2658683.
 
- Hoyos A, Gómez ND,  Gómez JA. Fiber specklegram sensors (FSS) for measuring high frequency  mechanical perturbations. Proc SPIE 2013; 8785: 8785BH. DOI:  10.1117/12.2026075.
 
- Leal-Junior AG, Frizera A, Marques  C, Pontes MJ. Optical fiber specklegram sensors for mechanical measurements: A  review. IEEE Sens J 2020; 20(2): 569-576. DOI:  10.1109/JSEN.2019.2944906.
 
- Liu Y, Li G, Qin Q, Tan Z, Wang M,  Yan F. Bending recognition based on the analysis of fiber specklegrams using  deep learning. Opt Laser Technol 2020; 131: 106424. DOI: 10.1016/j.optlastec.2020.106424.
 
- Wang JJ, Yan SC, Ruan YP, Xu F, Lu  YQ. Fiber-optic point-based sensor using specklegram measurement. Sensors  2017; 17(10): 2429. DOI: 10.3390/s17102429.
 
- Arango  JD, Vélez YA, Aristizabal VH, Vélez FJ, Gómez JA, Quijano JC, Herrera-Ramirez  J. Numerical study using finite element method for the thermal response of  fiber specklegram sensors with changes in the length of the sensing zone. Computer Optics 2021; 45(4):  534-540. DOI: 10.18287/2412-6179-CO-852.
 
- Castaño  LF, Gutierrez LC, Quijano JC, Herrera-Ramírez JA, Hoyos A, Vélez FJ,  Aristizábal VH, Da Silva-Nunez LC, Gómez JA. Temperature measurement by means of fiber  specklegram sensors (FSS). Óptica Pura y Aplicada 2018; 51(3): 1-7. DOI: 10.7149/OPA.51.3.50306.
 
- Rodriguez-Cobo  L, Lomer M, Lopez-Higuera JM. Fiber specklegram sensors sensitivities at high temperatures. Proc  SPIE 2015; 9634: 96347J. DOI:  10.1117/12.2194288.
 
- Fujiwara E, Wu YT, Santos MFM, Schenkel  EA, Suzuki CK. Optical  fiber specklegram sensor for measurement of force myography signals. IEEE  Sens J 2017; 17(4): 951-958. DOI: 10.1109/JSEN.2016.2638831.
 
- Fujiwara E, Wu YT, Suzuki CK. Vibration-based specklegram fiber sensor for  measurement of properties of liquids. Opt Lasers Eng 2012; 50(12): 1726-1730. DOI: 10.1016/j.optlaseng.2012.06.018.
 
- Fujiwara E, Da Silva LE, Cabral TD,  De Freitas HE, Wu YT, Cordeiro CMB. Optical fiber specklegram chemical sensor based on a concatenated  multimode fiber structure. J Light Technol 2019; 37(19): 5041-5047. DOI:  10.1109/JLT.2019.2927332.
 
- Fujiwara E, Santos MFM, Suzuki CK.  Development of a tactile sensor based on optical fiber specklegram analysis and  sensor data fusion technique. Sensors Actuators A Phys 2017; 263:  677-686. DOI: 10.1016/j.sna.2017.07.031.
 
- Fujiwara E, Santos MFM, Suzuki CK. Optical fiber  specklegram sensor analysis by speckle pattern division. Appl Opt 2017; 56(6): 1585-1590. DOI:  10.1364/AO.56.001585.
 
- Gubarev  F, Li L, Klenovskii M, Glotov A. Speckle pattern processing by digital image  correlation. MATEC Web  of Conferences 2016; 48: 04003. DOI: 10.1051/matecconf/20164804003
 
- Aristizábal VH, Vélez FJ, Rueda E,  Gómez JA, Quijano JC. Numerical  modeling of fiber specklegram sensors by using finite element method (FEM). Opt  Express 2016; 24(24): 27225-27238. DOI: 10.1364/oe.24.027225.
 
- Efendioglu HS, Yildirim T, Toker O,  Fidanboylu K. New statistical features for the design of fiber optic  statistical mode sensors. Opt Fiber Technol 2013; 19(4): 279-284. DOI:  10.1016/j.yofte.2013.02.009.
 
- Gutiérrez  LC, Castaño LF, Gómez JA, Quijano JC, Herrera-Ramírez JA, Hoyos A,  Da-Silva-Nunez LC, Vélez FJ, Aristizabal VH. Specklegramas de fibra óptica analizados mediante procesamiento digital  de imágenes. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y  Naturales 2018; 42(163): 182. DOI: 10.18257/raccefyn.608.
 
- Gao X, Wu J, Song B, Liu H, Duan S,  Zhang Z, Liu X, Sun H. Deep learning for temperature sensing with microstructure  fiber in noise perturbation environment. IEEE Photon Technol Lett 2023;  35(23): 1247-1250.
 
- Arango JD, Aristizabal VH,  Carrasquilla JF, Gómez JA, Quijano JC, Velez FJ, Herrera-Ramirez J. Deep  learning classification and regression models for temperature values on a  simulated fibre specklegram sensor. J Phys Conf Ser 2021; 2139(1):  012001. DOI: 10.1088/1742-6596/2139/1/012001.
 
- Simonyan K, Zisserman A. Very deep  convolutional networks for large-scale image recognition. arXiv Preprint. 2014.  Source: <https://arxiv.org/abs/1409.1556>. DOI: 10.48550/arXiv.1409.1556.
 
- Pang B, Nijkamp E, Wu YN. Deep  learning with TensorFlow: A review. J Educ Behav Stat 2020; 45(2):  227-248. DOI: 10.3102/1076998619872761. 
- Chicco D, Warrens  MJ, Jurman G. The coefficient of determination R-squared is more informative  than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci 2021; 7: 1-24. DOI: 10.7717/PEERJ-CS.623.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20