(48-5) 15 * << * >> * Russian * English * Content * All Issues
  
Methodology for detecting and assessing the dynamics of defects in engineering structures by processing images from an unmanned aerial vehicle
 M.N. Suetin 1,2, V.E. Dementiev 2, A.G. Tashlinskii 2, R.G. Magdeev 2
 1 FRPC JSC 'RPA 'Mars',
     432027, Ulyanovsk, Russia, Solnechnaya 20;
     2 Ulyanovsk State Technical University,
     432027, Ulyanovsk, Russia, Severnyy Venets 32
 PDF, 2513 kB
  PDF, 2513 kB
DOI: 10.18287/2412-6179-CO-1438
Pages: 762-771.
Full text of article: Russian language.
 
Abstract:
We  propose a non-invasive technique for automated detection and assessment of the  dynamics of defects in engineering structures based on processing images  received from unmanned aerial vehicles during periodic surveillance flights  over an engineering structure. The technique includes stages of detecting  defects, collating the defect images acquired during the latest and previous  surveillance flights, and identifying the dynamics of defect development. An  example of the implementation and testing of the methodology for detecting and  assessing the dynamics of cracks in metal structures of bridge crossings is given.  The technique allows you to significantly reduce the cost of monitoring the  condition of defects in engineering structures while increasing the probability  of detecting defects.
Keywords:
monitoring, bridge,  metal structure, defect, technique, processing, neural network, detection,  stochastic adaptation, image, deformation, combination.
Citation:
  Suetin MN, Dementiev VE, Tashlinskii AG, Magdeev RG. Methodology for detecting and assessing the dynamics of defects in engineering structures by processing images from an unmanned aerial vehicle. Computer Optics 2024; 48(5): 762-771. DOI: 10.18287/2412-6179-CO-1438.
Acknowledgements:
  This work was financially supported by the Russian Science Foundation under grants Nos. 22-21-00513 and 23-21-00249.
References:
  - Guidelines  for monitoring the condition of in-service bridge structures [In Russian]. Industry road methodological  document GRM 218.4.002-2008. Moscow:  "Federal'noye Dorozhnoye Agentstvo" Publisher; 2008.
 
- Guidelines  for inspection and reinforcement of in-service welded spans [In Russian]. Ministry of Railways. Moscow: "NII Mostov  LIIZHTa" Publisher; 1990.
 
- Arushonok  YuYu. Determination  of parameters of building structures operation under load in the process of  their testing [In Russian]. Metallicheskiye Konstruktsii 2019;  25(2): 53-64.
 
- Gorokhov EV  Evaluation  of technical condition and technical diagnostics of metal structures of  industrial buildings and structures [In Russian]. Stroitel' Donbassa 2019; 2(7):  15-25. 
 
- Kanaeva IA, Ivanova YuA, Spitsyn VG. Deep  convolutional generative adversarial network-based synthesis of datasets for  road pavement distress segmentation. Computer Optics 2021; 45(6): 907-916. DOI:  10.18287/2412-6179-CO-844. 
 
- Su H, Wang X, Han T, Wang Z, Zhao Z,  Zhang P. Research on a U-Net bridge crack identification and  feature-calculation methods based on a CBAM attention mechanism. Buildings  2022; 12(10): 1561. DOI: 10.3390/buildings12101561 
 
- Pu R, Ren G, Li H, Jiang W, Zhang J,  Qin H. Autonomous concrete crack semantic segmentation using deep fully  convolutional encoder-decoder network in concrete structures inspection.  Buildings 2022; 12(11): 2019. DOI: 10.3390/buildings12112019. 
 
- Özgenel ÇF. Concrete crack images  for classification. Mendeley Data. V2. 2019. Source: <https://data.mendeley.com/datasets/5y9wdsg2zt/2>. DOI:  10.17632/5y9wdsg2zt.2. 
 
- Magdeev  R, Safina G, Tashlinskii A. Analysis of the influence of background areas on  the registration efficiency of multiple images bridge structures. Int Conf on  Information Technology and Nanotechnology (ITNT-2023) 2023: 1-5. DOI:  10.1109/ITNT57377.2023.10138954.
 
- Suetin  MN, Tashlinskii AG, Magdeev RG. Joint usage of neural networks and stochastic referencing of images  while estimating defects in bridge structures. Int Conf on Information  Technology and Nanotechnology (ITNT-2022) 2022: 1-5. DOI: 10.1109/ITNT55410.2022.9848624.
 
- Tsypkin  YaZ. Information identity theory [In  Russian]. Moscow: "Fizmatlit" Publisher; 1995. ISBN: 5-02-015071-1.
 
- Andriyanov  NA, Dementiev VE, Tashlinskiy AG. Detection of objects in the images: from  likelihood relationships towards scalable and efficient neural networks.  Computer Optics 2022; 46(1): 139-159. DOI: 10.18287/2412-6179-CO-922.
 
- Huang B, Reichman D, Collins LM,  Bradbury K, Malof JM. Tiling and stitching segmentation output for remoute  sensing: basic challenges and recomendations. arXiv Preprint. 2024. Source: <https://arxiv.org/abs/1805.12219>. DOI: 10.48550/arXiv.1805.12219.
 
- Dementev VE, Suetin MN, Gaponova MA.  Using Machine Learning Techniques to Detect Defects in Images of Metal  Structures. Pattern Recognition and Image Analysis 2021; 31(3): 506-512. DOI:  10.1134/51054661821030068. 
 
- Redmon  J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time  object detection. Proc IEEE Conf on Computer Vision and Pattern Recognition  (CVPR) 2016; 1: 779-788. DOI: 10.1109/CVPR.2016.91.
 
- Redmon J, Farhadi A. YOLOv3: An  incremental improvement. arXiv Preprint. 2024. Source: <https://arxiv.org/abs/1804.02767>. DOI: 10.48550/arXiv.1804.02767. 
 
- Kalinina MO, Nikolaev PL. Book spine  recognition with the use of deep neural networks. Computer Optics 2020; 44(6):  968-977. DOI: 10.18287/2412-6179-CO-731.
 
- Deng J, Dong W, Socher R, Li L-J, Li  K, Fei-Fei L. ImageNet: a large-scale hierarchical image database. IEEE  Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, FL,   USA, 2009; 1:  248-255. DOI: 10.1109/CVPR.2009.5206848. 
 
- Computer Vision Annotation Tool  (CVAT). Source: <https://github.com/opencv/cvat>.
 
- Ronneberger  O, Fischer F, Brox T. U-Net: Convolutional networks for biomedical image  segmentation. 18th International Conference on Medical Image Computing and Computer-Assisted  Intervention (MICCAI 2015), Munich,   Germany,  October 5-9, 2015; 9351: 234-241. DOI: 10.1007/978-3-319-24574-4_28
 
- Iglovicov  V, Shvets A. TernausNet: U-Net with VGG11 encoder pre-trained on ImageNet for  image segmentation. Source: <https://arxiv.org/abs/1801.05746>. DOI:  10.48550/arXiv.1801.05746.
    
- Long  J, Shelhamer E, Darrel T. Fully Convolutional Networks for Semantic  Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern  Recognition (CVPR), Boston,   MA, USA,  2015; 1: 3431-3440. DOI: 10.1109/CVPR.2015.7298965.
 
- Chen L-C, Papandreou G, Schroff F,  Adam H. Rethinking Atrous Convolution for Semantic Image Segmentation. Source: <https://arxiv.org/abs/1706.05587>. DOI: 10.48550/arXiv.1706.05587
 
- Chen L-C, Zhu Y, Papandreou G,  Schroff F. Encoder-decoder with atrous separable convolution for semantic image  segmentation. In Book: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, eds.  Computer vision – ECCV 2018. Cham: Nature Switzerland AG; 2018: 833-851. DOI:  10.1007/978-3-030-01234-2_49. 
 
- Dementyiev VE, Andriyanov NA,  Vasilyiev KK. Use of images augmentation and implementation of doubly stochastic  models for improving accuracy of recognition algorithms based on convolutional  neural networks. Systems on Signal Synchronization, Generating and Processing  in Telecommunications (SYNCHROINFO) 2020: 1-4. DOI: 10.1109/SYNCHROINFO49631.2020.9166000. 
 
- Girshick R. Fast R-CNN. IEEE Int  Conf on Computer Vision (ICCV) 2015: 1440-1448. DOI: 10.1109/ICCV.2015.169. 
 
- Ren S, He K, Girshick R, Sun J.  Faster R-CNN: Towards real-time object detection with region proposal networks.  IEEE Trans Pattern Anal Mach Intell 2017; 39(6): 1137-1149. DOI:  10.1109/TPAMI.2016.2577031. 
 
- Dementev VE, Tashlinsky AG, Suetin  MN, Gaponova MA. Improving the quality of video processing based on the use of  an artificial YOLO neural network. VIII Int Conf on Information Technology and  Nanotechnology (ITNT-2022) 2022: 1-4. DOI: 10.1109/ITNT55410.2022.9848613. 
 
- Voronov SV, Tashlinskii AG.  Efficiency analysis of information theoretic measures in image registration. Pattern  Recogn Image Anal 2016;  26(3): 502-505. DOI: 10.1134/S1054661816030226.
 
- Minkina GL, Samoilov MYu, Tashlinskii AG. Choice of the objective function for  pseudogradient measurement of image parameters. Pattern Recogn Image Anal 2007;  17(1): 136-139. DOI:10.1134/S1054661807010166 
 
- Tashlinskii  AG. Optimization of goal function pseudogradient in the problem of interframe  geometrical deformations estimation. In Book: Yin P-Y, ed. Pattern recognition  techniques, technology and applications. London,   UK:  "InTech" Publisher; 2008: 249-280. DOI: 10.5772/6244.
 
- Tashlinskii AG, Tikhonov  VO. Methodology for  analyzing the error of pseudogradient measurement of parameters of  multidimensional processes [In Russian]. Izvestiya VUZov: Radioelektronika 2001, 44(9): 75-80.
 
- Tashlinskii AG, Safina GL, Voronov SV. Pseudogradient optimization of  objective function in estimation of geometric interframe image deformations. Pattern  Recogn Image Anal 2012;  22(2): 386-392. DOI: 10.1134/S1054661812020174.
 
- Magdeev  RG, Tashlinskii AG. A comparative analysis of the efficiency of the stochastic  gradient approach to the identification of objects in binary images. Pattern  Recogn Image Anal 2014; 24(4): 535-541. DOI: 10.1134/S1054661814040130.
 
- Gonzalez  RC, Woods E. Digital image processing. 4th  ed. New York: Pearson; 2017. ISBN:  978-1-292-22304-9.
 
- Magdeev R, Tashlinskii A, Safina G.  Efficiency of stochastic gradient identification of similar shape objects in  binary and grayscale images. CEUR Workshop Proc 2020; 2665: 25-28. 
 
- You Y, Cao J, Zhou W. A survey of  change detection methods based on remote sensing images for multi-source and  multi-objective scenarios. Remote Sens 2020; 12(15): 2460. DOI:  10.3390/rs12152460. 
 
- Jiang H, Peng M,  Zhong Y, Xie H, Hao Z, Lin J, Ma X, Hu X. A survey on deep learning-based  change detection from high-resolution remote sensing images. Remote Sens 2022;  14(7): 1552. DOI: 10.3390/rs14071552. 
 
- Zhou Z,  Siddiquee MR, Tajbakhsh N, Liang J. UNet++: A nested U-Net architecture for  medical image segmentation. 4th Int Workshop, DLMIA 2018, and 8th Int Workshop,  ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain,  2018: 3-11. DOI: 10.1007/978-3-030-00889-5_1
 
- Peng D, Zhang  Y, Guan H. End-to-end change detection for high resolution satellite images  using improved UNet++. Remote Sens 2019; 11(11): 1382. DOI: 10.3390/rs11111382.
 
- Zhong Z, Zheng L, Kang G, Li S, Yang  Y. Random erasing data augmentation. Proc AAAI Conf on Artificial Intelligence  2020; 34(07): 13001-13008. DOI: 10.1609/aaai.v34i07.7000. 
 
- Jamshidi  M, El-Badry M, Nourian N. Improving concrete crack segmentation networks  through CutMix data synthesis and temporal data fusion. Sensors 2023; 23(1):  504. DOI: 10.3390/s23010504..
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20