(48-6) 05 * << * >> * Russian * English * Content * All Issues

Polarization structure of optical vortices in inclined Laguerre-Gaussian beams passed through a uniaxial crystal
Yu.A. Egorov 1, A.F. Rubass 1

Physics and Technology Institute of V.I. Vernadsky Crimean Federal University,
295007, Simferopol, Republic of Crimea, Russia, Academician Vernadsky 4

 PDF, 1532 kB

DOI: 10.18287/2412-6179-CO-1469

Pages: 841-850.

Full text of article: Russian language.

Abstract:
The work shows that in linearly polarized Laguerre-Gaussian beams passing through an anisotropic medium at an angle to the optical axis of the crystal, the distribution of optical vortices is devoid of axial symmetry. It is shown that the trajectories of movement of polarization singularities in the plane of the Laguerre-Gauss beam are different for different cases of input linear polarization at angles γ=±45° and there is an exchange of optical vortices, provided that the sign of the topological charge is preserved. It is shown that when the axis of an anisotropic medium is tilted, the movement of optical vortices occurs, accompanied by topological reactions of creation, destruction, or displacement of optical vortices to the periphery of the beam. It is characteristic that at angles of inclination by linear polarization γ=+45°, topological reactions of creation and annihilation occur, and at angles γ=–45°, topological reactions of displacement of optical vortices to the periphery of the beam occur.

Keywords:
optical vortices, uniaxial crystal, Laguerre-Gaussian beams.

Citation:
Egorov YA, Rubass AF. Polarization structure of optical vortices in inclined Laguerre-Gaussian beams passed through a uniaxial crystal. Computer Optics 2024; 48(6): 841-850. DOI: 10.18287/2412-6179-CO-1469.

Acknowledgements:
This work was supported by the Russian Science Foundation under project No. 24-12-20013.

References:

  1. Gbur GJ. Singular optics. New York: CRC Press; 2017. DOI: 10.1201/9781315374260.
  2. Soifer VA, Golub MA. Laser beam mode selection by computer-generated holograms. Boca Raton: CRC Press; 1994. ISBN: 0-8493-2476-9.
  3. Wang J, Yang JY, Fazal IM, Ahmed N, Yan Y, Huang H, Ren YX, Yue Y, Dolinar S, Tur M, Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 2012; 6: 488-496. DOI: 10.1038/nphoton.2012.138.
  4. Mair A, Vaziri A, Weihs, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 2001; 412(6844): 313. DOI: 10.1038/35085529.
  5. Singh H, Gupta DL, Singh AK. Quantum key distribution protocols: A review. J Comput Eng 2014; 16: 1-9. DOI: 10.9790/0661-162110109.
  6. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex laser beams. Boca Raton: CRC Press; 2018. ISBN: 978-1138542112.
  7. Abramochkin E, Razueva E. Product of three Airy beams. Opt Lett 2011; 36(19): 3732-3734. DOI: 10.1364/OL.36.003732.
  8. Abramochkin E, Volostnikov V. Beam transformations and non-transformed beams. Opt Commun 1991; 83(1-2); 123-135. DOI: 10.1016/0030-4018(91)90534-K.
  9. Khonina SN, Kotlyar VV, Soifer VA, Paakkonen P, Turunen J. Measuring the light field orbital angular momentum using DOE. Optical Memory and Neural Networks 2001; 10(4): 241-255.
  10. Khonina SN, Kotlyar VV, Soifer VA, Jefimovs K, Turunen J. Generation and selection of laser beams represented by a superposition of two angular harmonics. J Mod Opt 2004; 51(5): 761-773. DOI: 10.1080/09500340408235551.
  11. Born M, Wolf E. Principles of optics. Electromagnetic theory of propagation, interference and diffraction of light. 4th ed. Pergamon Press; 1970. ISBN: 978-0-080139876.
  12. Khonina SN, Kharitonov SI. Comparative investigation of nonparaxial mode propagation along the axis of uniaxial crystal. J Mod Opt 2015; 62(2): 125-134. DOI: 10.1080/09500340.2014.959085.
  13. Khonina SN, Karpeev SV, Alferov SV, Soifer VA. Generation of cylindrical vector beams of high orders using uniaxial crystals. J Opt 2015; 17(6): 065001. DOI: 10.1088/2040-8978/17/6/065001.
  14. Khonina SN, Karpeev SV, Paranin VD, Morozov AA. Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals. Phys Lett A 2017; 381(30): 2444-2455. DOI: 10.1016/j.physleta.2017.05.025.
  15. Vlokh R, Mys O, Romanyuk M, Girnyk I, Martunyuk-Lototska I, Czapla Z. optical characterization of organic-inorganic [(CH2OH)3CNH3)]H2PO4 crystals. Ukrainian Journal of Physical Optics 2005; 4(6): 133-135. DOI: 10.3116/16091833/6/4/133/2005.
  16. Cincotti G, Ciattoni A, Sapia C. Radially and azimuthally polarized vortices in uniaxial crystals. Opt Commun 2003; 220(1-3): 33-40. DOI: 10.1016/S0030-4018(03)01372-5.
  17. Ciattoni A, Palma C. Nondiffracting beams in uniaxial media propagating orthogonally to the optical axis. Opt Commun 2003; 224(-6): 175-183. DOI: 10.101 6/S0030-4018(03)01759-0.
  18. Hacyan S, Jáuregui R. Evolution of optical phase and polarization vortices in birefringent media. J Opt A: Pure Appl Opt 2009; 11(8): 085204. DOI: 10.1088/1464-4258/11/8/085204.
  19. Khonina SN, Paranin VD, Ustinov AV, Krasnov AP. Astigmatic transformation of Bessel beams in a uniaxial crystal. Optica Applicata 2016; 46(1): 5-18. DOI: 10.5277/oa160101.
  20. Flossmann F, Schwarz UT, Maier M, Dennis MR. Polarization singularities from unfolding an optical vortex through a birefringent crystal. Phys Rev Lett 2005; 95(25): 253901. DOI: 10.1103/PhysRevLett.95.253901.
  21. Flossmann F. Schwarz UT, Maier M, Dennis MR. Stokes parameters in the unfolding of an optical vortex through a birefringent crystal. Opt Express 2006; 14(23): 11402-11411. DOI: 10.1364/OE.14.011402.
  22. Yonezawa K, Kozawa Y, Sato S. Focusing of radially and azimuthally polarized beams through a uniaxial crystal. J Opt Soc Am A 2008; 25: 469-472. DOI: 10.1364/JOSAA.25.000469.
  23. Fadeyeva TA, Rubass AF, Volyar AV. Transverse shift of a high-order paraxial vortex-beam induced by a homogeneous anisotropic medium. Phys Rev A 2009; 79(5): 053815. DOI: 10.1103/PhysRevA.79.053815.
  24. Craciun A, Grigore OV. Superposition of vortex beams generated by polarization conversion in uniaxial crystals. Sci Rep 2022; 12: 8135. DOI: 10.1038/s41598-022-12223-3.
  25. Nye JF. Natural focusing and fine structure of light: Caustics and wave dislocations. Bristol: Institute of Physics Publishing; 1999. ISBN: 0750306106.
  26. Volyar AV, Fadeeva TA. Dynamics of topological multipoles: I. High-order nonparaxial singular beams. Opt Spectrosc 2002; 92(2): 243-252. DOI: 10.1134/1.1454037.
  27. Volyar AV, Fadeeva TA. Dynamics of topological multipoles: II. Creation, annihilation, and evolution of nonparaxial optical vortices. Opt Spectrosc 2002; 92(2): 253-262. DOI: 10.1134/1.1454038.
  28. Volyar AV, Egorov YuA. Super pulses of orbital angular momentum in fractional-order spiroid vortex beams. Opt Lett 2018; 43: 74-77. DOI: 10.1364/OL.43.000074.
  29. Egorov Yu, Rubass A. Spin-orbit coupling in quasi-monochromatic beams. Photonics 2023; 10: 305. DOI: 10.3390/photonics10030305.
  30. Volyar AV, Abramochkin EG, Egorov YuA, Bretsko MV, Akimova YaE. Digital sorting of Hermite-Gauss beams: mode spectra and topological charge of a perturbed Laguerre-Gauss beam. Computer Optics 2020; 44(4): 501-509. DOI: 10.18287/2412-6179-CO-747.
  31. Volyar A, Abramochkin E, Akimova Ya, Bretsko M, Egorov Yu. Fast oscillations of orbital angular momentum and Shannon entropy caused by radial numbers of structured vortex beams. Appl Opt 2022; 61: 6398-6407. DOI: 10.1364/AO.464178.
  32. Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Sorting Laguerre-Gaussian beams by radial numbers via intensity moments. Computer Optics 2020; 44(2): 155-166. DOI: 10.18287/2412-6179-CO-677.
  33. Vasilyev VS, Kapustin AI, Skidanov RV, Podlipnov VV, Ivliev NA, Ganchevskaya SV. Experimental investigation of the stability of Bessel beams in the atmosphere. Computer Optics 2019; 43(3): 376-384. DOI: 10.18287/2412-6179-2019-43-3-376-384.
  34. Gbur G, Tyson RK. Vortex beam propagation through atmospheric turbulence and topological charge conservation. J Opt Soc Am A 2008; 25: 225-230. DOI: 10.1364/JOSAA.25.000225.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20