(49-2) 01 * <<< * >> * Russian * English * Content * All Issues

Fine-structure mapping of structured Laguerre-Gaussian beam states on the orbital Poincaré sphere
A.V. Volyar 1, E.G. Abramochkin 2, M.V. Bretsko 1

Physics and Technology Institute of V.I. Vernadsky Crimean Federal University,
295007, Simferopol, Republic of Crimea, Russia, Academician Vernadsky 4;
Lebedev Physical Institute,
443011, Samara, Russia, Novo-Sadovaya 221

 PDF, __ kB

DOI: 10.18287/2412-6179-CO-1562

Pages: 165-172.

Full text of article: Russian language.

Abstract:
Elements of a 4D symplectic matrix P of second-order intensity moments are theoretically found and experimentally measured for paraxial structured Laguerre-Gaussian (sLG) beams with two control parameters—the amplitude e and phaseq. It is shown that only three out of ten elements of the matrix P are independent and directly measurable in the experiment. The remaining elements are determined through them. This made it possible to calculate the orbital Stokes parameters (S1, S2, S3), with their the sum of squares forming the invariant S of a first-order optical system. In terms of the elements of the matrix P, the orbital Stokes parameters are parameterized by the parameter q of the sLG beam. The invariant S can be treated as the radius of a 2D sphere (orbital Poincaré sphere) in the Cartesian coordinates (S1<, S2, S3). These coordinates map the sLG beam states onto the sphere, where the mapped trajectories acquire a complete spatial form inherent in two parametric sLG beam. The variation of the amplitude parameter controls the area covered by the trajectory, its shape and positions of the trajectory self-crossing points. It should be noted that the area of the sphere covered by the trajectory on the sphere with an adiabatic change in the beam parameter is directly related to the geometric Berry phase. Thus, with propagation and variations of the phase parameter, the sLG beam can acquire a controlled geometric phase, which can be considered as an additional degree of freedom.

Keywords:
symplectic matrix, structured Laguerre-Gaussian beam, orbital angular momentum, Poincare sphere.

Citation:
Volyar AV, Abramochkin EG, Bretsko MV. Fine-structure mapping of structured Laguerre-Gaussian beam states on the orbital Poincaré sphere. Computer Optics 2025; 49(2): 165-172. DOI: 10.18287/2412-6179-CO-1562.

Acknowledgements:
This work was financially supported by the Russian Science Foundation under project No. 24-22-00278 (Section  “4D Intensity Moments Matrix”).

References:

  1. Poincaré H. Theorie Mathematique de la Lumiere. Paris: GauthiersVillars; 1892. ISBN: 978-2019673512.
  2. Toninelli E, Ndagano B, Vallés A, Sephton B, Nape I, Ambrosio A, Capasso F, Padgett MJ, Forbes A. Concepts in quantum state tomography and classical implementation with intense light: a tutorial. Adv Opt Photonics 2019; 11(1): 67-134. DOI: 10.1364/AOP.11.000067.
  3. Shen Y, Nape I, Yang X, Gong M, Naidoo D, Forbes A. Creation and control of high-dimensional multi-partite classically entangled light. Light Sci Appl 2021; 10: 50. DOI: 10.1038/s41377-021-00493-x.
  4. Padgett MJ, Courtial J. Poincaré-sphere equivalent for light beams containing orbital angular momentum. Opt Lett 1999; 24(7): 430-432. DOI: 10.1364/OL.24.000430.
  5. Alieva T, Bastiaans MJ. Phase-space rotations and orbital Stokes parameters. Opt Lett 2009; 34(4): 410-412. DOI: 10.1364/OL.34.000410.
  6. Dennis MR, Alonso MA. Swings and roundabouts: Optical Poincaré spheres for polarization and Gaussian beams. Philos Trans R Soc London A 2017; 375(2087): 20150441. DOI: 10.1098/rsta.2015.0441.
  7. Alonso MA, Dennis MR. Ray-optical Poincaré sphere for structured Gaussian beams. Optica 2017; 4(4): 476-486. DOI: 10.1364/OPTICA.4.000476.
  8. He C, Shen Y, Forbes A. Towards higher-dimensional structured light. Light Sci Appl 2022; 11(1): 205. DOI: 10.1038/s41377-022-00897-3.
  9. Shen Y, Wang Z, Fu X, Naidoo D, Forbes A. SU(2) Poincaré sphere: A generalized representation for multidimensional structured light. Phys Rev A 2020; 102(3): 031501. DOI: 10.1103/PhysRevA.102.031501.
  10. Abramochkin EG, Volostnikov VG. Generalized Gaussian beams. J Opt A: Pure Appl Opt 2004; 6(5): S157-S161. DOI: 10.1088/1464-4258/6/5/001.
  11. Calvo GF. Wigner representation and geometric transformations of optical orbital angular momentum spatial modes. Opt Lett 2005; 30(10): 1207-1209. DOI: 10.1364/OL.30.001207.
  12. Volyar A, Abramochkin E, Akimova Ya, Bretsko M. Control of the orbital angular momentum via radial numbers of structured Laguerre–Gaussian beams. Opt Lett 2022; 47(10): 2402-2405. DOI: 10.1364/OL.459404.
  13. Weber H, Herziger G, Poprawe R. Laser physics and applications. Subvolume A: Laser Fundamentals. Berlin: Springer; 2004. ISBN: 978-3-540-44821-1.
  14. Wolf KB. Geometric optics on phase space. Berlin: Springer; 2004. ISBN: 3-540-22039-9.
  15. Born M, Wolf E. Principles of optics. Cambridge: Cambridge University Press; 1999. ISBN: 0-521-642221.
  16. Bekshaev AY. Intensity moments of a laser beam formed by superposition of Hermite-Gaussian modes. arXiv Preprint. 2006. Source: <https://arxiv.org/abs/physics/0607047>. DOI: 10.48550/arXiv.physics/0607047.
  17. Nemes G, Siegman AE. Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics. J Opt Soc Am A 1994; 11(8): 2257-2264. DOI: 10.1364/JOSAA.11.002257.
  18. Alieva T, Cámara A, Bastiaans MJ. Beam mapping on the orbital Poincaré sphere. Proc SPIE 2011; 8011: 801160. DOI: 10.1117/12.902154.
  19. Volyar A, Abramochkin E, Bretsko M, Akimova Y. Engineering orbital angular momentum in structured beams in general astigmatic systems via symplectic matrix approach. Photonics 2024; 11(3): 191. DOI: 10.3390/photonics11030191.
  20. ISO 11146-2:2021. Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios. Part 2: General astigmatic beams. Geneva, Switzerland: ISO; 2021.
  21. Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Beyond the light intensity or intensity moments and measurements of the vortex spectrum in complex light beams. Computer Optics 2018; 42(5): 736-743. DOI: 10.18287/2412-6179-2017-42-5-736-743.
  22. Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Shaping and processing the vortex spectra of singular beams with anomalous orbital angular momentum. Computer Optics 2019; 43(4): 517-527. DOI: 10.18287/2412-6179-2019-43-4-517-527.
  23. Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Sorting Laguerre-Gaussian beams by radial numbers via intensity moments. Computer Optics 2020; 44(2): 155-166. DOI: 10.18287/2412-6179-CO-677.
  24. Testforf M, Hennelly B, Ojeda-Castañeda J. Phase-space optics: fundamentals and applications. London, Sydney: McGraw-Hill; 2010. ISBN: 0071597980.
  25. Berry MV. Quantal phase factors accompanying adiabatic changes. Proc R Soc Lond A 1984; 392(1802): 45-57. DOI: 10.1098/rspa.1984.0023.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20