(49-2) 01 * <<< * >> * Russian * English * Content * All Issues
  
Fine-structure mapping of structured Laguerre-Gaussian beam states on the orbital Poincaré sphere
 A.V. Volyar 1, E.G. Abramochkin 2, M.V. Bretsko 1
 1 Physics and Technology Institute of V.I. Vernadsky Crimean Federal University,
     295007, Simferopol, Republic of Crimea, Russia, Academician Vernadsky 4;
     2 Lebedev Physical Institute,
  443011, Samara, Russia, Novo-Sadovaya 221
  PDF, __ kB
DOI: 10.18287/2412-6179-CO-1562
Pages: 165-172.
Full text of article: Russian language.
 
Abstract:
Elements of a 4D symplectic  matrix P of second-order intensity moments are theoretically found and  experimentally measured for paraxial structured Laguerre-Gaussian (sLG) beams  with two control parameters—the amplitude e and phaseq. It is shown that only three out of ten elements of  the matrix P are independent and directly measurable in the experiment. The remaining elements are determined  through them. This made it  possible to calculate the orbital Stokes parameters (S1, S2, S3), with their the sum of  squares forming the invariant S of a  first-order optical system. In terms of the elements of the matrix P,  the orbital Stokes parameters are parameterized by the parameter q of the sLG beam. The invariant S can be treated as the radius of a 2D  sphere (orbital Poincaré sphere) in the Cartesian coordinates (S1<, S2, S3). These coordinates map the  sLG beam states onto the sphere, where the mapped trajectories acquire a  complete spatial form inherent in two parametric sLG beam. The variation of the  amplitude parameter controls the area covered by the trajectory, its shape and  positions of the trajectory self-crossing points. It should be noted  that the area of the sphere  covered by the trajectory on  the sphere with an adiabatic  change in the beam parameter  is directly related to  the geometric Berry phase. Thus,  with propagation  and variations of the phase parameter,  the sLG beam can  acquire a controlled geometric phase, which  can be considered as  an additional degree of  freedom.
Keywords:
symplectic matrix,  structured Laguerre-Gaussian beam, orbital angular momentum, Poincare sphere.
Citation:
  Volyar AV, Abramochkin  EG, Bretsko MV. Fine-structure mapping of structured Laguerre-Gaussian beam states on  the orbital Poincaré sphere.  Computer Optics 2025; 49(2): 165-172. DOI: 10.18287/2412-6179-CO-1562.
Acknowledgements:
  This work was financially supported by the Russian Science Foundation  under project No. 24-22-00278 (Section   “4D Intensity Moments Matrix”).
References:
  - Poincaré H. Theorie  Mathematique de la Lumiere. Paris:  GauthiersVillars; 1892. ISBN: 978-2019673512.
 
  - Toninelli  E, Ndagano B, Vallés A, Sephton B, Nape I, Ambrosio A, Capasso F, Padgett MJ,  Forbes A. Concepts in quantum state tomography and classical implementation  with intense light: a tutorial. Adv Opt Photonics 2019; 11(1): 67-134. DOI:  10.1364/AOP.11.000067.
 
  - Shen  Y, Nape I, Yang X, Gong M, Naidoo D, Forbes A. Creation and control of  high-dimensional multi-partite classically entangled light. Light Sci Appl  2021; 10: 50. DOI: 10.1038/s41377-021-00493-x.
     
  - Padgett MJ,  Courtial J. Poincaré-sphere equivalent for light beams containing orbital  angular momentum. Opt Lett 1999; 24(7): 430-432. DOI: 10.1364/OL.24.000430.
     
  - Alieva  T, Bastiaans MJ. Phase-space rotations and orbital Stokes parameters. Opt Lett  2009; 34(4): 410-412. DOI: 10.1364/OL.34.000410.
     
  - Dennis  MR, Alonso MA. Swings and roundabouts: Optical Poincaré spheres for  polarization and Gaussian beams. Philos Trans R Soc London A 2017; 375(2087):  20150441. DOI: 10.1098/rsta.2015.0441.
     
  - Alonso  MA, Dennis MR. Ray-optical Poincaré sphere for structured Gaussian beams.  Optica 2017; 4(4): 476-486. DOI: 10.1364/OPTICA.4.000476.
     
  - He  C, Shen Y, Forbes A. Towards higher-dimensional structured light. Light Sci  Appl 2022; 11(1): 205. DOI: 10.1038/s41377-022-00897-3.
     
  - Shen  Y, Wang Z, Fu X, Naidoo D, Forbes A. SU(2) Poincaré sphere: A generalized  representation for multidimensional structured light. Phys Rev A 2020; 102(3):  031501. DOI: 10.1103/PhysRevA.102.031501.
     
  - Abramochkin EG, Volostnikov VG. Generalized  Gaussian beams. J Opt A: Pure Appl Opt 2004; 6(5): S157-S161. DOI:  10.1088/1464-4258/6/5/001.
     
  - Calvo  GF. Wigner representation and geometric transformations of optical orbital  angular momentum spatial    modes. Opt Lett 2005; 30(10): 1207-1209. DOI: 10.1364/OL.30.001207.
     
  - Volyar  A, Abramochkin E, Akimova Ya, Bretsko M. Control of the orbital angular  momentum via radial numbers of structured Laguerre–Gaussian beams. Opt Lett  2022; 47(10): 2402-2405. DOI: 10.1364/OL.459404.
     
  - Weber  H, Herziger G, Poprawe R. Laser physics and applications. Subvolume A: Laser  Fundamentals. Berlin:  Springer; 2004. ISBN: 978-3-540-44821-1.
     
  - Wolf  KB. Geometric optics on phase space. Berlin:  Springer; 2004. ISBN: 3-540-22039-9.
     
  - Born  M, Wolf E. Principles of optics. Cambridge: Cambridge University Press; 1999. ISBN:  0-521-642221.
     
  - Bekshaev AY.  Intensity moments of a laser beam formed by superposition of Hermite-Gaussian  modes. arXiv Preprint. 2006. Source: <https://arxiv.org/abs/physics/0607047>. DOI: 10.48550/arXiv.physics/0607047.
     
  - Nemes G, Siegman  AE. Measurement of all ten second-order moments of an astigmatic beam by the  use of rotating simple astigmatic (anamorphic) optics. J Opt Soc Am A 1994;  11(8): 2257-2264. DOI: 10.1364/JOSAA.11.002257.
     
  - Alieva  T, Cámara A, Bastiaans MJ. Beam mapping on the orbital Poincaré sphere. Proc  SPIE 2011; 8011: 801160. DOI: 10.1117/12.902154.
     
  - Volyar  A, Abramochkin E, Bretsko M, Akimova Y. Engineering orbital angular momentum in  structured beams in general astigmatic systems via symplectic matrix approach.  Photonics 2024; 11(3): 191. DOI: 10.3390/photonics11030191.
     
  - ISO  11146-2:2021. Lasers and laser-related equipment – Test methods for laser beam  widths, divergence angles and beam propagation ratios. Part 2: General  astigmatic beams. Geneva, Switzerland: ISO; 2021.
     
  - Volyar  AV, Bretsko MV, Akimova YaE, Egorov YuA. Beyond the light intensity or  intensity moments and measurements of the vortex spectrum in complex light  beams. Computer Optics 2018; 42(5): 736-743. DOI:  10.18287/2412-6179-2017-42-5-736-743.
     
  - Volyar  AV, Bretsko MV, Akimova YaE, Egorov YuA. Shaping and processing the vortex  spectra of singular beams with anomalous orbital angular momentum. Computer  Optics 2019; 43(4): 517-527. DOI: 10.18287/2412-6179-2019-43-4-517-527. 
     
  - Volyar  AV, Bretsko MV, Akimova YaE, Egorov YuA. Sorting Laguerre-Gaussian beams by radial  numbers via intensity moments. Computer Optics 2020; 44(2): 155-166. DOI:  10.18287/2412-6179-CO-677.
     
  - Testforf  M, Hennelly B, Ojeda-Castañeda J. Phase-space optics: fundamentals and  applications. London, Sydney: McGraw-Hill; 2010. ISBN: 0071597980. 
 
  - Berry MV. Quantal phase factors accompanying  adiabatic changes. Proc R Soc Lond A 1984; 392(1802): 45-57. DOI:  10.1098/rspa.1984.0023.
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20