(49-5) 04 * << * >> * Russian * English * Content * All Issues
Technology for creating a photonic integrated circuit on a lithium niobate substrate
V.S. Solovyov 1, S.A. Degtyarev 2,3, S.N. Khonina 2,3, S.P. Timoshenkov 1, A.S. Timoshenkov 1, N.A. Raschepkina 4, A.E. Chalykh 5
1 National Research University of Electronic Technology – MIET,
Shokin Square, Bld. 1, Zelenograd, Moscow, Russia, 124498;
2 Image Processing Systems Institute, NRC "Kurchatov Institute",
Molodogvardeyskaya Str. 151, Samara, 443001, Russia;
3 Samara National Research University,
Moskovskoye Shosse 34, Samara, 443086, Russia;
4 Samara State Technical University,
Molodogvardeyskaya Str. 244, Samara, 443100, Russia;
5 The Institute of Physical Chemistry and Electrochemistry RAS (IPCE RAS),
Leninsky Prospekt 31, bld. 4, Moscow, 119071, Russia
PDF, 1715 kB
DOI: 10.18287/2412-6179-CO-1599
Pages: 733-740.
Full text of article: Russian language.
Abstract:
We propose a new technology for manufacturing a photonic integrated circuit (PIC) on a lithium niobate substrate. It is shown that there is no need to dope the top layer of lithium niobate to create a waveguide system and control radiation. It will suffice to coat the lithium niobate substrate with a layer of a material with higher refractive index, thus creating an asymmetric waveguide, with the radiation mainly propagating deeper within the lithium niobate. In this way, placing metal electrodes along the waveguide layer, it is possible to control the velocity of wave propagation in a waveguide and create controlled photonic circuits, for example, an amplitude Mach-Zehnder modulator or a phase modulator. A technology of spraying a titanium dioxide layer onto the lithium niobate substrate is experimentally created and investigated. It is shown that after the finishing polishing of the end side of the lithium niobate plate, radiation exits from the plate output end. So, it becomes possible to create a PIC with an array of closely spaced waveguides, from which radiation can be output into space and coupled into the lens of a photo or video camera for further processing.
Keywords:
photonic integrated circuit (PIC), planar waveguide, lithium niobate, titanium dioxide, optical polishing of a thin cutting.
Citation:
Solovyov VS, Degtyarev SA, Khonina SN, Timoshenkov SP, Timoshenkov AS, Rascshepkina NA, Chalykh AE. Technology for creating a photonic integrated circuit on a lithium niobate substrate. Computer Optics 2025; 49(5): 733-740. DOI: 10.18287/2412-6179-CO-1599.
Acknowledgements:
This work was funded by the Russian Science Foundation under grant No. 24-22-00044 https://rscf.ru/project/24-22-00044/.
References:
- Petrov VM, Shamray AV. Interference and diffraction for information photonics [In Russian]. Saint-Petersburg: “Lanj” Publisher; 2019.
- Toney JE. Lithium niobate photonics. Boston, USA: Artech House; 2015. ISBN: 978-1-60807-923-0.
- Bazzan M, Sada C. Optical waveguides in lithium niobate: recent developments and applications. Appl Phys Rev 2015; 2(4): 040603. DOI: 10.1063/1.4931601.
- Il'ichev IV, Kozlov AS, Gaenko PV, Shamray AV. Optimisation of the proton-exchange technology for fabricating channel waveguides in lithium niobate crystals. Quantum Electron 2009; 39(1): 98-104. DOI: 10.1070/QE2009v039n01ABEH013878.
- Karavaev PM, et al. Polarization separation in titanium-diffused waveguides on lithium niobate substartes. Tech Phys Lett 2016; 42(5): 513-516. DOI: 10.1134/S1063785016050266.
- Petrov MP, Stepanov SI, Homenko AV. Photorefractive crystals in coherent optics [In Russian]. Saint-Petersburg: “Nauka” Publisher; 1992.
- Petrov MP, Shamraǐ AV, Petrov VM. Electrically controlled diffraction of light by reflection holograms in an LiNbO3 crystal. Physics of the Solid State 1998; 40(6): 948-951. DOI: 10.1134/1.1130455.
- Petrov MP, Shamray AV, Petrov VM, Sanchez-Mondragon J. Electric field selectivity of reflection volume holograms in LiNbO3. Opt Commun 1998; 153(4-6): 305-308. DOI: 10.1016/S0030-4018(98)00260-0.
- Chamrai AV, Petrov VM, Petrov MP. Crosstalk caused by incoherence of the readout light in wavelength-division multiplexing of reflection holograms. Tech Phys 1999; 44(9): 1098-1102. DOI: 10.1134/1.1259480.
- Breer S, Buse S. Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate. Appl Phys B 1998; 66(3): 339-345. DOI: 10.1007/s003400050398.
- Petrov VM, et al. Electrically controlled volume LiNbO3 holograms for wavelength demultiplexing systems. Opt Mater 2001; 18(1): 191-194. DOI: 10.1016/S0925-3467(01)00165-3.
- Petrov VM, et al. Electric field selectivity and multiplexing of volume holograms in LiNbO3. Appl Phys B 2000; 71(1): 43-46. DOI: 10.1007/s003400050072.
- Kuzminov YuS. Lithium niobate and tantalate. Materials for nonlinear optics. Moscow: “Nauka” Publisher; 1975.
- Weiner JS, Miller DAB, Chemla DS. Quadratic electro-optic effect due to the quantum-confined Stark effect in quantum wells. Appl Phys Lett 1987; 50(13): 842-844. DOI: 10.1063/1.98008.
- Jacques M, Samani A, Patel D. Modulator material impact on chirp, DSP, and performance in coherent digital links: comparison of the lithium niobate, indium phosphide, and silicon platforms. Opt Express 2018; 26(17): 22471-22490. DOI: 10.1364/OE.26.022471.
- Petrov VM, Shamrai AV. Microwave integrated optical modulators. Theory and practice [In Russian]. Saint-Petersburg: ITMO University Publisher; 2021.
- Azanova IS. Surface, structure and optical properties of proton-exchange waveguide layers on a lithium niobate single crystal [In Russian]. The thesis for the Candidate’s degree in physical and mathematical sciences. Permian; 2006.
- Azanova IS, et al. Formation of lamlet phases on the surface of X-cut lithium niobate single crystal during proton exchange [In Russian]. Fundamental'nyye problemy sovremennogo materialovedeniya 2005; 2(1): 98-102.
- Korkishko YuA, Fedorov VA. Optical properties and crystal structure of annealed proton exchange fibers in LiNb03 [In Russian]. JETP 1996; 66(5): 86-98.
- Ganshin VA, Korkishko YuN, Petrova VZ. Formation and properties of H:LiTaO3 light guides. JETP 1989; 59(8): 69-71.
- Ponomarev RS, Shevtsov DI, Karnaushkin PV. “Shutdown” of the proton exchange channel waveguide in the phase modulator under the influence of the pyroelectric effect. Appl Sci 2019; 9(21): 4585. DOI: 10.3390/app9214585.
- Kostritskii SM, Korkishko YuN, et al. Electro-optic MZI modulators, utilizing different phases in proton-exchanged LiTaO3 waveguides. Proc SPIE 2005; 5956: 595610. DOI: 10.1117/12.620459.
- Jubera M, et al. Photorefractive effect and optical damage thresholds in z-cut swift heavy ion irradiation LiNbO3 waveguides. Source: <https://www.ecio-conference.org/wp-content/uploads/2016/05/2012/ECIO-2012_ThP091.pdf>.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20