(49-5) 03 * << * >> * Russian * English * Content * All Issues
Vortex laser beams with complex amplitude proportional to the product of two Bessel functions
V.V. Kotlyar 1,2, E.G. Abramochkin 3, A.A. Kovalev 1,2, E.S. Kozlova 1,2
1 Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
2 Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34;
3 Lebedev Physical Institute,
443011, Samara, Russia, Novo-Sadovaya 221
PDF, 2333 kB
DOI: 10.18287/2412-6179-CO-1635
Pages: 723-732.
Full text of article: Russian language.
Abstract:
The optical vortices with the complex amplitude which is presented by the product of the Gaussian function and two Bessel functions with a complex root dependence of the arguments on the cylindrical coordinates and a constant parameter that determines the type of intensity distribution. These beams can be named Bessel-Bessel-Gaussian beams (BBG beams). An explicit expression for the complex amplitude of such beams at any distance from the waist is presented. We have demonstrated that BBG beams have an anomalously high rotation speed: the intensity rotates by almost 45 degrees at a distance much smaller than the Rayleigh length. It is shown that the parameter allow to control the topological charge of the BBG beam. The topological charge increases in jumps by an even number with an increase in the positive value of the parameter.
Keywords:
Bessel function, Gauss function, Bessel-Bessel-Gauss beams.
Citation:
Kotlyar VV, Abramochkin EG, Kovalev AA, Kozlova ES. Vortex laser beams with complex amplitude proportional to the product of two Bessel functions. Computer Optics 2025; 49(5): 723-732. DOI: 10.18287/2412-6179-CO-1635.
Acknowledgements:
This work was supported by the Ministry of Science and Higher Education within the State assignment NRC "Kurchatov Institute" in part of theory, Russian Science Foundation (Project No. 22-12-00236) in part of simulation.
References:
- Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory. J Opt Soc Am A 1987; 4(4): 651-654. DOI: 10.1364/JOSAA.4.000651.
- Gori F, Guattari G, Padovani C. Bessel-Gauss beams. Opt Commun 1987; 64(6): 491-495. DOI: 10.1016/0030-4018(87)90276-8.
- Khonina SN, Kazanskiy NL, Karpeev SV, Butt MA. Bessel beam: Significance and applications – A progressive review. Micromachines 2020; 11(11): 997. DOI: 10.3390/mi11110997.
- Stoian R, Bhuyan MK, Zhang G, Cheng G, Meyer R, Courvoisier F. Ultrafast Bessel beams: advanced tools for laser materials processing. Adv Opt Tech 2018; 7(3): 165-174. DOI: 10.1515/aot-2019-0029.
- Velpula PK, Bhuyan MK, Courvoisier F, Zhang H, Colombier JP, Stoian R. Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring. Laser Photonics Rev 2016; 10(2): 230-244. DOI: 10.1002/lpor.201500112.
- Milne G, Dholakia K, McGloin D, Volke-Sepulveda K, Zemánek P. Transverse particle dynamics in a Bessel beam. Opt Express 2007; 15(21): 13972-13987. DOI: 10.1364/OE.15.013972.
- Suarez RA, Ambrosio LA, Neves AA, Zamboni-Rached M, Gesualdi MR. Experimental optical trapping with frozen waves. Opt Lett 2020; 45(9): 2514-2517. DOI: 10.1364/OL.390909.
- Rivero D, de Angelis VS, Beli C, Moreno M, Ambrosio LA, Courteille PW. Hollow Bessel beams for guiding atoms between vacuum chambers: a proposal and efficiency study. J Opt Soc Am B 2020; 37(9): 2660-2667. DOI: 10.1364/JOSAB.395200.
- Liang Y, Yan S, Yao B, Lei M. Direct observation and characterization of optical guiding of microparticles by tightly focused non-diffracting beams. Opt Express 2019; 27(26): 37975-37985. DOI: 10.1364/OE.381969.
- Fahrbach FO, Rohrbach A. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat Commun 2012; 3(1): 632. DOI: 10.1038/ncomms1646.
- Thériault G, De Koninck Y, McCarthy N. Extended depth of field microscopy for rapid volumetric two-photon imaging. Opt Express 2013; 21(8): 10095-100104. DOI: 10.1364/OE.21.010095.
- Mphuthi N, Botha R, Forbes A. Are Bessel beams resilient to aberrations and turbulence? J Opt Soc Am A 2018; 35(6): 1021-1027. DOI: 10.1364/JOSAA.35.001021.
- Chen S, Li S, Zhao Y, Liu J, Zhu L, Wang A, Du J, Shen L, Wang J. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation. Opt Lett 2016; 41(20): 4680-4683. DOI: 10.1364/OL.41.004680.
- Caron CFR, Potvliege RM. Bessel-modulated Gaussian beams with quadratic radial dependence. Opt Commun 1999; 164(1-3): 83-93. DOI: 10.1016/S0030-4018(99)00174-1.
- Kotlyar VV, Kovalev AA, Kalinkina DS. Fractional-order-Bessel Fourier-invariant optical vortices. Opt Commun 2021; 492: 126974. DOI: 10.1016/j.optcom.2021.126974.
- Kotlyar VV, Kovalev AA, Skidanov RV, Soifer VA. Asymmetric Bessel–Gauss beams. J Opt Soc Am A 2014; 31(9): 1977-1983. DOI: 10.1364/JOSAA.31.001977.
- Sheppard CJR, Porras MA. Comparison between the propagation properties of Bessel–Gauss and generalized Laguerre–Gauss beams. Photonics 2023; 10(9): 1011. DOI: 10.3390/photonics10091011.
- Bagini V, Frezza F, Santarsiero M, Schettini G, Shirripa Spagnolo G. Generalized Bessel-Gauss beams. J Mod Opt 1996; 43(6): 1155-1166. DOI: 10.1080/09500349608232794.
- Abramochkin EG, Kotlyar VV, Kovalev AA. Double and square Bessel–Gaussian beams. Micromachines 2023; 14(5): 1029. DOI: 10.3390/mi14051029.
- Wang HF, Gan F. High focal depth with a pure-phase apodizer. App Opt 2001; 40(31): 5658-5662. DOI: 10.1364/AO.40.005658.
- Mondal A, Yevick A, Blackburn LC, Kanellakoupoulos N, Grier DG. Projecting non-diffracting waves with intermediateplane holography. Opt Express 2018; 26(4): 3926-3931. DOI: 10.1364/OE.26.003926.
- McLeod JH. The axicon: A new type of optical element. J Opt Soc Am 2004; 44(8): 592-597. DOI: 10.1364/JOSA.44.000592.
- Arimoto R, Saloma C, Tanaka T, Kawata S. Imaging properties of axicon in a scanning optical system. App Opt 1992; 31(31): 6653-6657. DOI: 10.1364/AO.31.006653.
- Breen T, Basque-Giroux N, Fuchs U, Golub I. Tuning the resolution and depth of field of a lens using an adjustable ring beam illumination. App Opt 2020; 59(15): 4744-4749. DOI: 10.1364/AO.389353.
- Sheppard CJR, Wilson T. Gaussian-beam theory of lenses with annular aperture. IEE Journal on Microwaves, Optics and Acoustics 1978; 2(4): 105-112. DOI: 10.1049/ij-moa.1978.0023.
- Prudnikov AP, Brychkov YA, Marichev OI. Integrals and series. Volume 2: Special functions. New York: Gordon and Breach; 1986. ISBN: 2-88124-097-6.
- Brychkov Y. Handbook of special functions: Derivatives, integrals, series and other formulas. CRC Press, 2008.
- Kovalev AA, Kotlyar VV. Optical vortex beams with the infinite topological charge. J Opt 2021; 23: 055601. DOI: 10.1088/2040-8986/abf172.
- Kovalev AA, Kotlyar VV. Orbital angular momentum of generalized cosine Gaussian beams with an infinite number of screw dislocations. Optik 2021; 242: 166863. DOI: 10.1016/j.ijleo.2021.166863.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20