(48-4) 02 * << * >> * Русский * English * Содержание * Все выпуски

Шестиволновое взаимодействие в многомодовых волноводах с керровской нелинейностью с учетом гауссовой структуры волн накачки
В.В. Ивахник 1, Д.Р. Капизов 1, В.И. Никонов 1

Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34

  PDF, 829 kB

DOI: 10.18287/2412-6179-CO-1439

Страницы: 483-490.

Язык статьи: English.

Аннотация:
Проанализировано качество обращения волнового фронта при шестиволновом взаимодействии в двумерных многомодовых волноводах с керровской нелинейностью при условии, что одна из волн накачки возбуждает нулевую моду волновода, а распределение амплитуды другой волны накачки на грани волновода меняется по гауссову закону. Показано, что в волноводе с бесконечно проводящими стенками полуширина модуля функции размытия точки шестиволнового преобразователя излучения полностью определяется поперечными размерами волновода, слабо зависит от ширины гауссовой волны накачки. В волноводе с параболическим профилем показателя преломления уменьшение ширины гауссовой волны накачки на гранях волновода приводит, как правило, к монотонному уменьшению полуширины модуля функции размытия точки.

Ключевые слова:
шестиволновой преобразователь излучения, обращение волнового фронта, керровская нелинейность.

Цитирование:
Ивахник, В.В. Шестиволновое взаимодействие в многомодовых волноводах с керровской нелинейностью с учетом гауссовой структуры волн накачки / В.В. Ивахник, Д.Р. Капизов, В.И. Никонов // Компьютерная оптика. – 2024. – Т. 48, № 4. – С. 483-490. – DOI: 10.18287/2412-6179-CO-1439.

Citation:
Ivakhnik VV, Kapizov DR, Nikonov VI. Six-wave interaction in multimode waveguides with Kerr nonlinearity with allowance for the Gaussian structure of pump waves. Computer Optics 2024; 48(4): 483-490. DOI: 10.18287/2412-6179-CO-1439.

References:

  1. Ivakhnik VV, Nikonov VI. Six-wave interaction with double wavefront reversal on thermal nonlinearity in a medium with a nonlinear absorption coefficient. Computer Optics 2017; 41(3): 315-321. DOI: 10.18287/2412-6179-2017-41-3-315-321.
  2. Karpuk SM, Rubanov AS, Tolstik AL. Double phase conjugation in quadratic recording of dynamic holograms in resonance media. Opt Spectrosc 1996; 80(2): 276-280.
  3. Astinov V, Kubarych KJ, Milne CJ, Miller RJD. Diffractive optics implementation of six-wave mixing. Opt Lett 2000; 25(11): 853-855.DOI: 10.1364/OL.25.000853.
  4. Miller RJD, Paarmann A, Prokhopenko AI. Diffractive optics based four-wave, six-wave, ..., ν-wave nonlinear spectroscopy. Acc Chem Res 2009; 42(9): 1442-1451. DOI: 10.1021/ar900040f.
  5. Romanov OG, Gorbach DV, Tolstik AL. Frequency transformation of optical vortices upon nondegenerate multiwave interaction in dye solutions. Opt Spectrosc 2010; 108(5): 768-773. DOI: 10.1134/S0030400X10050152.
  6. Gaižauskas E, Steponkevičius K, Vaičaitis V. Fifth-order intensity autocorrelations based on six-wave mixing of femtosecond laser pulses. Phys Rev A 2016; 93(2): 023813. DOI: 10.1103/PhysRevA.93.023813.
  7. Lin S, Hands ID, Andrews DL, Meech SR. Optically induced second harmonic generation by six-wave mixing: A novel probe of solute orientation dynamics. J Phys Chem A 1999; 103(20): 3830-3836. DOI: 10.1021/jp9845221.
  8. Heuer W, Zacharias H. Stimulated Raman effect and four-wave mixing in a hollow waveguide. IEEE J Quantum Electron 1988; 24(10): 2087-2100. DOI: 10.1109/3.8547.
  9. Lor KP, Chiang KS. Theory of nondegenerate fourwave mixing in a birefringent optical fibre. Opt Commun 1998; 152(1-3): 26-30. DOI: 10.1016/S0030-4018(98)00127-8.
  10. Ivahnik VV, Nikonov VI, Harskaja TG. Four-wave conversion of radiation by thermal nonlinearity in a fiber with a parabolic profile [In Russian]. Izvestija Vuzov: Priborostroenie 2006; 49(8): 54-60.
  11. Gupta R, Kaler RS. Nonlinear Kerr and intermodal four-wave mixing effect in mode-division multiplexed multimode fiber link. Opt Eng 2019; 58(3): 036108. DOI: 10.1117/1.OE.58.3.036108.
  12. Zhang H, Bigot-Astruc M, Sillard P, Fatome J. Spatially multiplexed picosecond pulse-train generation in a 6 LP mode fiber based on multiple four-wave mixings. Appl Opt 2019; 58(31): 8570-8576. DOI: 10.1364/AO.58.008570.
  13. Anjum OF, Guasoni M, Horak P, Jung Y, Petropoulos P, Richardson DJ, Parmigiani F. Polarization-insensitive four-wave-mixing-based wavelength conversion in few-mode optical fibers. J Lightw Technol 2018; 36(17): 3678-3683. DOI: 10.1109/JLT.2018.2834148.
  14. Zhou1 H, Liao1 M, Huang S-W, Zhou L, Qiu1 K, Wong CW. Six-wave mixing induced by free-carrier plasma in silicon nanowire waveguides. Laser Photon Rev 2016; 10(6): 1054-1061. DOI: 10.1002/lpor.201600124.
  15. Dmitriev VG. Nonlinear optics and wavefront reversal [In Russian]. Moscow: "Fizmatlit" Publisher; 2003.
  16. Voronin ES, Petnikova VM, Shuvalov VV. Use of degenerate parametric processes for wavefront correction (review). Sov J Quantum Electron 1981; 11(5): 551-561. DOI: 10.1070/QE1981v011n05ABEH006899.
  17. Ivakhnik VV. Wavefront reversal at four-wave interactions [In Russian]. Samara: “Samara State University” Publisher; 2010.
  18. Vinogradova MB, Rudenko OV, Sukhorukov AP. Wave theory [In Russian]. Moscow: “Fizmatlit” Publisher; 1979.
  19. Adams MJ. An introduction to optical waveguide. New York: John Wiley & Sons Inc; 1981.
  20. Ivakhnik VV, Kapizov DR, Nikonov VI. Quality of wavefront reversal for four-wave interaction in a multimode waveguide with thermal nonlinearity. Computer Optics 2022; 46(1): 48-55. DOI: 10.18287/2412-6179-CO-1011.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20