(48-4) 03 * << * >> * Russian * English * Content * All Issues

On obtaining the coupled-mode theory using a model of coupled plane waves for symmetric resonant diffraction gratings
D.A. Bykov 1,2, E.A. Bezus 1,2, L.L. Doskolovich 1,2

Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 3061 kB

DOI: 10.18287/2412-6179-CO-1398

Pages: 491-500.

Abstract:
We consider two analytical models describing resonant scattering of light by resonant diffraction gratings possessing a horizontal symmetry plane. For the case of oblique incidence, a multiple interference model is formulated, on the basis of which, a new approach for deriving the coupled-mode theory for the considered structures is proposed. Both considered models describe resonances in the reflectance and transmittance spectra of the studied diffraction gratings arising due to the excitation of quasiguided modes and Fabry–Pérot modes. Interaction of these modes leads to the appearance of bound states in the continuum, which are also described by the proposed models.

Keywords:
coupled-mode theory, coupled plane waves model, multiple interference model, resonant diffraction grating, Fano resonance, scattering matrix.

Citation:
Bykov DA, Bezus EA, Doskolovich LL. On obtaining the coupled-mode theory using a model of coupled plane waves for symmetric resonant diffraction gratings. Computer Optics 2024; 48(4): 491-500. DOI: 10.18287/2412-6179-CO-1398.

Acknowledgements:
This work was funded by the Russian Science Foundation (project 22-12-00120; derivation of the coupled-mode theory) and within the State assignment to the NRC "Kurchatov Institute" (development of the numerical simulation software).

References:

  1. Haus HA. Waves and fields in optoelectronics. Eng-lewood Cliffs: Prentice Hall; 1984. ISBN: 978-0139460531.
  2. Barybin AA. Electrodynamics of waveguide structures. Theory of excitation and coupling of waves [In Russian]. Moscow: “Fizmatlit” Publisher; 2007. ISBN: 978-5-9221-0740-2.
  3. Haus H, Huang W. Coupled-mode theory. Proc IEEE 1991; 79(10): 1505-1518. DOI: 10.1109/5.104225.
  4. Rosenblatt D, Sharon A, Friesem AA. Resonant grating waveguide structures. IEEE J Quant Electron 1997; 33(11): 2038-2059. DOI: 10.1109/3.641320.
  5. Fan S, Suh W, Joannopoulos JD. Temporal coupled-mode theory for the Fano resonance in optical resonators. J Opt Soc Am A 2003; 20(3): 569-572. DOI: 10.1364/JOSAA.20.000569.
  6. Liu HC, Yariv A. Synthesis of high-order bandpass filters based on coupled-resonator optical waveguides (CROWs). Opt Express 2011; 19(18): 17653-17668. DOI: 10.1364/OE.19.017653.
  7. Stoll H, Yariv A. Coupled-mode analysis of periodic dielectric waveguides. Opt Commun 1973; 8(1): 5-8. DOI: 10.1016/0030-4018(73)90168-5.
  8. Ruan Z, Fan S. Temporal coupled-mode theory for light scattering by an arbitrarily shaped object supporting a single resonance. Phys Rev A 2012; 85(4): 043828. DOI: 10.1103/PhysRevA.85.043828.
  9. Bulgakov EN, Maksimov DN, Ershov AE. Optical coupled-mode theory for dielectric solids of revolution. Phys Rev A 2023; 107(4): 043506. DOI: 10.1103/PhysRevA.107.043506.
  10. Suh W, Wang Z, Fan S. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J Quantum Electron 2004; 40(10): 1511-1518. DOI: 10.1109/JQE.2004.834773.
  11. Hoekstra HJWM. Coupled mode theory for resonant excitation of waveguiding structures. Opt Quant Electron 2000; 32(6): 735-758. DOI: 10.1023/A:1007006226372.
  12. Nesterenko DV. Resonance characteristics of transmissive optical filters based on metal/dielectric/metal structures. Computer Optics 2020; 44(2): 219-228. DOI: 10.18287/2412-6179-CO-681.
  13. Nesterenko DV, Hayashi S, Soifer V. Ab initio spatial coupled-mode theory of Fano resonances in optical responses of multilayer interference resonators. Phys Rev A 2022; 106(2): 023507. DOI: 10.1103/PhysRevA.106.023507.
  14. Pietroy D, Tishchenko AV, Flury M, Parriaux O. Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis. Opt Express 2007; 15(15): 9831-9842. DOI: 10.1364/OE.15.009831.
  15. Bykov DA, Doskolovich LL. Spatiotemporal coupled-mode theory of guided-mode resonant gratings. Opt Express 2014; 23(15): 19234-19241. DOI: 10.1364/OE.23.019234.
  16. Bykov DA, Bezus EA, Doskolovich LL. From coupled plane waves to the coupled-mode theory of guided-mode resonant gratings. Photon Nanostr Fund Appl 2023; 56: 101167. DOI: 10.1016/j.photonics.2023.101167.
  17. Tishchenko AV. Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method. Opt Quant Electron 2005; 37(1): 309-330. DOI: 10.1007/s11082-005-1188-2.
  18. Lalanne P, Hugonin JP, Chavel P. Optical properties of deep lamellar gratings: a coupled Bloch-mode insight. J Lightw Technol 2006; 24(6): 2442-2449. DOI: 10.1109/JLT.2006.874555.
  19. Karagodsky V, Sedgwick FG, Chang-Hasnain CJ. Theoretical analysis of subwavelength high contrast grating reflectors. Opt Express 2010; 18(16): 16973-16988. DOI: 10.1364/OE.18.016973.
  20. Bykov DA, Bezus EA, Doskolovich LL. Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings. Phys Rev A 2019; 99(6): 063805. DOI: 10.1103/PhysRevA.99.063805.
  21. Bykov DA, Bezus EA, Doskolovich LL. Coupled-mode theory for resonant gratings with a varying period. Computer Optics 2023; 47(3): 341-349. DOI: 10.18287/2412-6179-CO-1232.
  22. Moharam MG, Grann EB, Pommet DA, Gaylord TK. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 1995; 12(5): 1068-1076. DOI: 10.1364/JOSAA.12.001068.
  23. Uretsky J. The scattering of plane waves from periodic surfaces. Ann Phys 1965; 33(3): 400-427. DOI: 10.1016/0003-4916(65)90269-1.
  24. Gippius NA, Tikhodeev SG, Ishihara T. Optical properties of photonic crystal slabs with an asymmetrical unit cell. Phys Rev B 2005; 72(4): 045138. DOI: 10.1103/PhysRevB.72.045138.
  25. Koshelev KL, Sadrieva ZF, Shcherbakov AA, Kivshar YuS, Bogdanov AA. Bound states in the continuum in photonic structures. Phys Usp 2023; 66(5): 494-517. DOI: 10.3367/UFNe.2021.12.039120.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20