(48-4) 07 * << * >> * Russian * English * Content * All Issues
Multi-order optical spatial vortex filters for simultaneous contour extraction of various parts of an object
S.N. Khonina 1,2, A.P. Porfirev 1,2, P.A. Khorin 1, A.P. Dzyuba 1, D.P. Serafimovich 1,2, R.V. Skidanov 1,2
1 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34;
2 Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151
PDF, 4310 kB
DOI: 10.18287/2412-6179-CO-1497
Pages: 525-534.
Abstract:
We study the transformation of the analyzed object by a variety of spatial filters including bandpass, differential, radial filters, various types of vortex filters, and Hilbert filters. Advantages and disadvantages of different filters in terms of clarity and direction-invariance of edge extraction, as well as the energy efficiency are numerically demonstrated. Based on the results obtained, multi-order optical spatial vortex filters with different parameters are developed for simultaneously extracting contours of various object parts. We show that a multi-order filter makes it possible to form a set of images in one plane with a clearly defined contour, object corners and various parts of the contour. Numerical and experimental testing of 4- and 5-channel spatial vortex filters of various types was applied for test objects. A possibility of using the proposed filters to simultaneously highlight the edges of the entire image and various parts of the image in order to extract more features from the analyzed image is shown.
Keywords:
spatial filtering, edge detection, multi-order optical filters.
Citation:
Khonina SN, Porfirev AP, Khorin PA, Dzyuba AP, Serafimovich DP, Skidanov RV. Multi-order optical spatial vortex filters for simultaneous contour extraction of various parts of an object. Computer Optics 2024; 48(4): 525-534. DOI: 10.18287/2412-6179-CO-1497.
Acknowledgements:
This study was conducted within the scientific program of the National Center for Physics and Mathematics, section #1 "National Center for Supercomputer Architecture Research. Stage 2023-2025" in part of numerical results and within the state assignment of the National Research Center “Kurchatov Institute” in theoretical part.
References:
- Gillespie WA. Optical information processing. Phys Educ 1999; 127(3): 29. DOI: 10.1088/0031-9120/29/3/003.
- Goswami D. Optical computing. Resonance 2003; 8(6): 56-71. DOI: 10.1007/BF02837869.
- Ambs P. Optical computing: A 60-year adventure. Adv Opt Technol 2010; 2010: 372652. DOI: 10.1155/2010/372652.
- Minzioni P, Lacava C, Tanabe T, et al. Roadmap on all-optical processing. J Opt 2019; 21(6): 063001. DOI: 10.1088/2040-8986/ab0e66.
- Kazanskiy NL, Butt MA, Khonina SN. Optical computing: Status and perspectives. Nanomaterials 2022; 12(13): 2171. DOI: 10.3390/nano12132171.
- Weaver CS, Goodman JW. A technique for optically convolving two functions. Appl Opt 1966; 5(7): 1248-1249. DOI: 10.1364/AO.5.001248.
- Kasana RS, Bhatnagar GP, Dubey MC. A review of mathematical operations by optical data processing. IEE-IERE Proc India 1975; 13(4): 134-144. DOI: 10.1049/iipi.1975.0034.
- Javidi B, Hornder JL. Real-time optical information processing. Boston: Academic Press; 1994.
- Goodman JW. 4 decades of optical information processing. Opt Photonics News 1991; 2(2): 11-15. DOI: 10.1364/OPN.2.2.000011.
- Heanue JF, Bashaw MC, Hesselink L. Volume holographic storage and retrieval of digital data. Science 1994; 265(5173): 749-752. DOI: 10.1126/science.265.5173.74.
- Goodman J. Introduction to Fourier optics. San Francisco, CA: McGraw Hill; 1968.
- Bracewell RB. The Fourier transform and its application. McGraw Hill; 1965.
- Stark H. Applications of optical Fourier transforms. Elsevier; 2012.
- Zernike F. How I discovered phase contrast. Science 1955; 121(3141): 345-349. DOI: 10.1126/science.121.3141.345.
- Casasent D, Furman A. Determining optimal matched filter parameters. Appl Opt 1976; 15(7): 1690-1691. DOI: 10.1364/AO.15.001690.
- Yu FTS, Gregory DA. Optical pattern recognition: architectures and techniques. Proc IEEE 1996; 84(5): 733-752. DOI: 10.1109/5.488743.
- Glückstad J, Mogensen PC, Eriksen RL. The generalized phase contrast method and its applications. DOPSNYT 2001; 1: 49-54.
- Juday R. Correlation filter basics. In Book: Vijaya Kumar BVK, Mahalanobis A, Juday RD. Correlation pattern recognition. Ch 5. Cambridge University Press; 2005: 130-195. DOI: 10.1017/cbo9780511541087.006.
- Yelleswarapu CS, Kothapalli S-R, Rao DVGLN. Optical Fourier techniques for medical image processing and phase contrast imaging. Opt Commun 2008; 281(7): 1876-1888. DOI: 10.1016/j.optcom.2007.05.072.
- Schausberger SE, Heise B, Maurer C, Bernet S, Ritsch-Marte M, Stifter D. Flexible contrast for low-coherence interference microscopy by Fourier-plane filtering with a SLM. Opt Lett 2010; 35(24): 4154-4156. DOI: 10.1364/OL.35.004154.
- Maurer C, Jesacher A, Bernet S, Ritsch-Marte M. What spatial light modulator can do for optical microscopy. Laser Photon Rev 2011; 5(1): 81-101. DOI: 10.1002/lpor.200900047.
- Zheng GA, Horstmeyer R, Yang CH. Wide-field, high-resolution Fourier ptychographic microscopy. Nat Photon 2013; 7(9): 739-745. DOI: 10.1038/nphoton.2013.187.
- Xiong Y, He A, Quan C. Cryptanalysis of an optical cryptosystem based on phase-truncated Fourier transform and nonlinear operations. Opt Commun 2018; 428: 120-130. DOI: 10.1016/j.optcom.2018.07.058.
- Zhu X, Yao H, Yu J, Gbur G, Wang F, Chen Y, Cai Y-j. Inverse design of a spatial filter in edge enhanced imaging. Opt Lett 2020; 45(9): 2542-2545. DOI: 10.1364/OL.391429.
- Kato H, Goodman JW. Nonlinear filtering in coherent optical systems through halftone screen processes. Appl Opt 1975; 14(8): 1813-1824. DOI: 10.1364/AO.14.001813.
- Babkina TM, Voloshinov VB. A new method of acousto-optic image processing and edge enhancement. J Opt A: Pure Appl Opt 2001; 3(4): S54. DOI: 10.1088/1464-4258/3/4/359.
- Popescu G, Deflores LP, Vaughan JC, Badizadegan K, Iwai H, Dasari RR, Feld MS. Fourier phase microscopy for investigation of biological structures and dynamics. Opt Lett 2004; 29(11): 2503-2505. DOI: 10.1364/OL.29.002503.
- Khonina SN, Kotlyar VV, Shinkaryev MV, Soifer VA, Uspleniev GV. The phase rotor filter. J Mod Opt 1992; 39(5): 1147-1154. DOI: 10.1080/09500349214551151.
- Hahn SL. Hilbert transforms in signal processing. Boston, London: Artech House; 1996.
- Davis JA, McNamara DE, Cottrell DM, Campos J. Image processing with the radial Hilbert transform: Theory and experiments. Opt Lett 2000; 25(2): 99-101. DOI: 10.1364/OL.25.000099.
- Guo C-S, Han Y-J, Xu J-B, Ding J. Radial Hilbert transform with Laguerre-Gaussian spatial filters. Opt Lett 2006; 31(10): 1394-1396. DOI: 10.1364/OL.31.001394.
- Jesacher A, Furhapter S, Bernet S, Ritsch-Marte M. Shadow effects in spiral phase contrast microscopy. Phys Rev Lett 2005; 94(23): 233902. DOI: 10.1103/PhysRevLett.94.233902.
- Maurer C, Bernetand S, Ritsch-Marte M. Refining common path interferometry with a spiral phase Fourier filter. J Opt A: Pure Appl Opt 2009; 11(9): 094023. DOI: 10.1088/1464-4258/11/9/094023.
- Ananin MA, Khonina SN. Modelling of optical processing of images with use of the vortical spatial filter. Computer Optics 2009; 33(4): 466-472.
- Davis JA, Smith DA, McNamara DE, Cottrell DM, Campos J. Fractional derivatives – analysis and experimental implementation. Appl Opt 2001; 40(32): 5943-5948. DOI: 10.1364/AO.40.005943.
- Wang J, Zhang W, Qi Q, Zheng S, Chen L. Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters. Sci Rep 2015; 5: 15826. DOI: 10.1038/srep15826.
- Situ G, Pedrini G, Osten W. Spiral phase filtering and orientation-selective edge detection/enhancement. J Opt Soc Am A 2009; 26(8): 1788-1797. DOI: 10.1364/JOSAA.26.001788.
- Sharma MK, Joseph J, Senthilkumaran P. Selective edge enhancement using anisotropic vortex filter. Appl Opt 2011; 50(27): 5279-5286. DOI: 10.1364/AO.50.005279.
- Sharma MK, Joseph J, Senthilkumaran P. Selective edge enhancement using shifted anisotropic vortex filter. J Opt 2013; 42: 1-7. DOI: 10.1007/s12596-012-0089-6.
- Khonina SN, Porfirev AP. Generation of multi-contour plane curves using vortex beams. Optik 2021; 229: 166299. DOI: 10.1016/j.ijleo.2021.166299.
- Kazanskiy NL, Khonina SN, Karpeev SV, Porfirev AP. Diffractive optical elements for multiplexing structured laser beams. Quantum Electron 2020; 50(7): 629-635. DOI: 10.1070/QEL17276.
- Kotlyar VV, Kovalev AA, Porfirev AP. Asymmetric Gaussian optical vortex. Opt Lett 2017; 42(1): 139-142. DOI: 10.1364/OL.42.000139.
- Khonina SN, Ustinov AV. Focusing of shifted vortex beams of arbitrary order with different polarization. Opt Commun 2018; 426: 359-365. DOI: 10.1016/j.optcom.2018.05.070.
- Vickers J, Burch M, Vyas R, Singh S. Phase and interference properties of optical vortex beams. J Opt Soc Am A 2008; 25(3): 823-827. DOI: 10.1364/JOSAA.25.000823.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20